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Abstract

The spatiochromatic characteristics of a dataset of 29 natural scenes (representative of
the natural terrain) were explored. The image capture was done using a video camera
capable of recording images through a set of 31 narrowband interference filters
spanning the visible spectrum. The system allows the measurement of spectral radiance
and reflectance for every point within a given scene. The Fourier amplitude spectrum
characteristics of the dataset were explored across the visible spectrum. Our results
show that (@) the mean distribution of spectral reflectance and radiance in our dataset is
consistent with the shape of the h.v.s. spectral sensitivity curves and (b) the
characteristics of the Fourier amplitude spectrum show no significant variation with
wavelength. We explored the consequences of having visual receptors different from
ours. Our results show that (c) thereis no significant variation of the Fourier amplitude
spectrum with the bandwidth of the receptor and (d) luminance images produced from
these hypothetical receptors show a Fourier amplitude spectrum whose characteristics
depend on those of the receptors. Luminance and chrominance images, based on
assumptions about human cone response and signal coding were derived from the
dataset. Our results show that (€) the different spatial transfer functions of colour and
luminance in human vision are not reflected in the spatial-frequency characteristics of
our scenes which appear to be rich in high-spatial -frequency chrominance information
(f) the Fourier amplitude spectrum of our luminance and chrominance images, when
plotted in log-log co-ordinates is a straight line with slope similar to that found for

achromatic images in other studies.
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Chapter 1

Background

1.1 Thevisual pathway

The pathway of light perceived by the h.v.s. can be sketched as follows: light enters the
eye and passing through its optics reaches the retina (see Figure 1.1). Here a group of
light receptors (cones and rods) converts the light into neural activity. This neural
activity (visual information) is then transmitted to the lateral geniculate nucleus (1.g.n.)
through the optic nerve (see Figure 1.2). The left |.g.n. receives fibers from retinal areas
stimulated by light from the right visual field in both eyes and the opposite happens
with the right I.g.n. From here, I.g.n. fibers project to the striate cortex (in the back of

the brain) on the same side.

Vitreous Humor

Optic Nerve

Figure 1.1: Schematic cross section of the eye
(from De Vaois and De Vaois 1990)

The neurophysiological approach to vision has been relatively successful in
understanding the precortical levels of the visual system: the retina and the lateral
geniculate nucleus. This may be because the relationship between neural responses and
the physical properties of the optical image are more direct at these precortical levels.
At higher levels of the visual system some less understood phenomena such as

consciousness, alertness and attention play significant roles in perception. Thereisa



large body of information available about the visual system of primates at the
precortical stages. The neural organisation of this system reveals general principles that
can be applied to man.

Lateral Geniculate
Nucleus

Striate Cortex

Superior
Colliculus

Figure 1.2: Schematic diagram of the main neural pathways
involved in vision (from De Vaois and De Vaois 1990).

1.2 The receptors

The h.v.s. has three types of cone photoreceptor (labelled L, M, and S) characterised by
different spectral sensitivities -low, middle and short wavelength sensitivity
respectively. The spectral sensitivity curves of these cones were derived by Smith and
Pokorny (1972, 1975) using a combination of psychophysical measures and some
reasonable assumptions. They obtained their data using dichromats (red or green colour-
blind observers) and flicker photometry to ensure that only one chromatic mechanism
contributed to the spectral sensitivity curve each time. Figure 1.3 showsthelL, M, and S
spectral sensitivity curves. The other receptor type (rod) plays no rolein colour vision.
They are about 10 times as sensitive as cones and thus their main contribution is at very
low (scotopic) levels of light. Although there are 20 times more rods than cones in the
human retina, cones make the largest contribution to the information going to
subsequent brain centres (De Valois and De Valois 1990). The largest concentration of
cone photoreceptors in the retina occurs in a centre called the fovea. Although the fovea
subtends a visual angle of only about 1 to 2 degrees, it plays a disproportionately large
rolein vision. Figure 1.4 shows a diagram of the density of receptors as a function of
radial eccentricity in the human retina. Most of the studies are in fact dedicated to
investigating foveal vision.
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Figure 1.3: Spectral sensitivity of L, M and S mechanisms. The scale for the S-cones
spectral sensitivity isamplified (right). From Smith and Pokorny’s (1975) data.
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Fi gure 1.4: Density of receptors vs. eccentricity in the human
retina (from De Valois and De Valois 1990).

1.3 Spatial and chromatic antagonisms

In the primate fovea the output of a single cone is transmitted to a single ganglion cell
by abipolar cell system. Thissignal is ultimately delivered to the visual cortex by relay
neurones in the I.g.n. Horizontal and amacrine cells receive inputs from groups of cones
creating cone opponent interactions. These kinds of interactions (see Figure 1.5) have
been detected in cones, horizontal cells, bipolars, ganglion cells and in neurones of the

retino-genicul ate pathway to the primate striate cortex. However, the precise effect is
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not yet understood. Cone opponency allows the h.v.s. to extract information from
chromatic contrast due to local spatial differencesin the spectral composition of the
light reaching it (see Figure 1.6). The comparison between the response of a single cone
to those of its neighbours provides information about achromatic contrast due to the

local spatial distribution of the overall energy of the light reaching the cone (see Figure
1.7). These two forms of visual contrast, chromatic and achromatic, may vary

independently of one another across an edge in the viewed scene. Thisleads Gouras
(1991a) to suggest that they require different neural networks for their detection.

Rod Bipokar C.

tnvaginating Bipolor C.

Flat Bipolar C. invog.Bip.C

DN

N,
Y Horizontal C.

N

AN

Rods

Cones

Figure 1.5: Opponent interactions in the retina (from
De Valoisand De Valois 1990)

Two different pathways become evident at the lateral geniculate nucleus (I.g.n.). The
l.g.n. is the main route by which the retina communicates with the cerebral cortex in
primates. All retinal axons that reach the I.g.n. connect to geniculate neurones which in
turn transmit signals onward to the striate cortex. Thus retinal axons are distributed into
specific layers of the l.g.n. to facilitate the transmission of their information to
appropriate layers in the striate cortex. Thesel.g.n. layers are called magnocellular and
parvocellular and it iswell established that they are two functionally different visual
pathways that operate in parallel on each local area of the retinal image. The
parvocellular system is composed of smaller cells with slower response to the stimuli
and is thought to provide the visual cortex with the bulk of the information for all
chromatic vision and also at least achromatic vision at high spatial resolution. The

magnocellular system is composed of larger cells, isthought to be sensitive to
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achromatic but not to chromatic contrast, and responds faster than the parvocellular

system to the stimuli (P. Gouras, 1991a).

Light Dark Light Dark Lignt Dark

SPATIAL ANTAGONISM

. A =7
inhibited exited

Lighte

Figure 1.6: Spatial antagonism occurring between
different areas of the retina (from Gouras 1991a).

| Figure 1.7: Spectral antagonismin
the retina (from Gouras 1991a).

Derrington et al. (1984a) distinguished two groups of cellsin the parvocellular layer of
the macaque's|.g.n. One of these groups of cells receives opposed, but not equally
balanced, inputs from only L and M cones (Derrington et al. assigned the label L-M to
thesel.g.n. cells). The other group of cells receive inputs from S cones amost equally
opposed to a combined input from L and M cones (these they labelled S-(L + M)). A
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second study (Derrington and Lennie 1984) reports relatively high sensitivity for
achromatic contrast and higher temporal frequency tuning in magnocellular units than

in parvocellular units of thel.g.n.

At this stage (1.g.n.) all visual information has been arranged into pools of
photoreceptors sampled on the retina. An estimation of the size of the pool of
photoreceptors sampled can be provided by psychophysical measurements of the spatial
resolution for pure chromatic contrast. This can be done using (pure) colour gratingsin
which only the wavelength varies sinusoidally between two extremes and the whole
grating is equated for luminance. These measurements (Mullen 1985) show that both S-
(L+M) (also called "blue- yellow") and L-M (also called "red-green™) contrast
sensitivity functions have similar low-pass characteristics. Figures 1.8 and 1.9 show the
L-M and S-(L+M) contrast sensitivity functions respectively to chromatic and

achromatic gratings.

Comparison between contrast sensitivity functions for chromatic and achromatic
gratings show that, at low spatial frequencies, contrast sensitivity is greater for the
chromatic grating than for the achromatic, and at high spatial frequencies the opposite

occurs.
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Figure 1.8: L-M contrast sensitivity function for
chromatic (sguares) and monochromatic (circles)
gratings. Taken from Mullen (1985).

At this point we should introduce some of the fundamental questions to be discussed
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later in thiswork: Why are the chromatic and achromatic contrast sensitivity thresholds
tuned to favour different portions of the spatial frequency spectrum? Isthis
physiological imbalance reflected in the physical spatial frequency content of natural
images? If so, we could conclude that the visual system has evolved to code the

information existing in the visual environment.
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Figure 1.9: S(L+M) contrast sensitivity function for
chromatic (squares) and monochromatic (circles)
gratings. Taken from Mullen (1985).

1.4 Spatial frequency channels in the achromatic domain

There is a considerable body of evidence supporting the suggestion that the contrast
sensitivity function represents the envelope of many more narrowly tuned filter
mechanisms (channels) that pass part of the information that may impinge upon them.
Figure 1.10 (De Valois and De Valois 1990) illustrates the above idea. Each of these
narrowly tuned spatial frequency filtersis responsive to only afraction of the total range
covered by the contrast sensitivity function. They simultaneously analyse a given
pattern, each responding as the pattern contains energy within its particular spatial
frequency band (parallel processing). The most convincing phychophysical
demonstration in support of the existence of multiple channelsis spatia frequency
specific adaptation (Blakemore and Champbell 1969). Here the contrast sensitivity
function is measured before and after the subject is adapted to a monochromatic grating
of single spatia frequency and the results show a band-pass loss in contrast sensitivity

around the adaptation frequency. It is assumed that these psychophysically measured
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spatial frequency channels are cortical in origin. One reason is because of the
orientation selectivity of the channels, a property shown by striate cortex and later
levels. A second reason isthe interocular transfer of spatial frequency adaptation
effects.

100.0

T TT1TTrrrT

30.0

T

10.0

Contrast Sensitivity

T T T T TTTT

3.0

T

T T 77177 T T T 17171717 T T
0.3 1.0 3.0 10.0 300

Spatial Frequency

Figure 1.10: Contrast sensitivity function viewed as the
envel ope of more narrowly tuned spatial freq. selective
channels (De Valois and De Valois 1990)

An important attempt to relate the statistical structure of the environment to the coding
derived from these narrowly tuned filter mechanisms of the visual system was made by
Field (1987). He considers the statistics of six achromatic scenes from the natural
environment and compares various coding schemes on how they represent information
in such natural scenes. Plotting the Fourier amplitude spectra of these images, Field
shows that the greatest valueis at low spatial frequencies and it decreases as spatial
frequency increases. The amplitude spectrafall off quickly by afactor of roughly f *
(wheref is spatial frequency). This means that the total energy (see Appendix B)
between for example, 2 and 4 cycles/deg will equal the energy between 4 and 8
cycles/deg. Such a spectrum isimplied by a natural (fractal-like) environment that has
s.f. energy invariant with scale (viewing distance). For a scene to be scale invariant, its
statistics must remain constant as one magnifies any local region of the scene. Field also
examines amodel of the behaviour of cortical cells derived from principles from
information theory (Shannon and Weaver 1949) and Gabor's (1946) theory of

communication. The function first proposed by Gabor to analyse time-varying signals

Chapter 1, page 8



was:

f(x)=sin(2-m -k-x+0)-e*"

This function can describe the profile of the receptive fields of cortical neurones
(similar to a Gaussian modulated by a sinusoid). The two-dimensional variation of this
function is described as the product of atwo dimensional Gaussian and a sinusoid. Field
labels as "sensors" individual Gabor functions located at a point within the scene and
representing a single hypothetical cortex cell. He organised these sensorsinto
"channels' (spatial arrays of sensors tuned to acommon orientation and s.f.). He
concludes that such a collection of channels with sf-bandwidths constant in octaves and
orientation bandwidths constant in degrees produces an even distribution of the
information (from the set of six scenes) across the array. Figure 1.11 shows the relations
between the size of a channel in the frequency domain and the size and spacing in the

space domain.

Frequency Domain Space Domain

Figure 1.11: Fields channels represented in the frequency domain and in the space
domain. A channel with abandwidth AF in the frequency domain consists of an
array of sensors with awidth AW in the space domain. Taken from Field (1987).

Figure 1.12 similarly shows the relations between the spacing of the channelsin the
frequency domain and the spacing of the sensorsin the space domain. Field found the
optimal sf-bandwidth to be in the range 0.5 to 1.5 octaves. Also the optimal constant
ratio between sf and orientation bandwidth (measured in the two-dimensional Fourier
space) was found to lie between 0.5 and 1.0. Field also applies |og-Gabor codes (a
function that is a Gaussian on alogarithmic frequency axis) to the images and compares

them to standard Gabor codes. One relevant property of these log-Gabor channelsis that

Chapter 1, page 9



they are always at zero at the zeroth sf and so a combination of them need not "over-
represent the low frequencies'. Field claims that his findings are in good agreement
with the neurophysiological literature for ssimple cortical cells although his evenly
distributed channels over arigid sensor grid do not model the variability in the spatial
frequency tuning of different cortical cells (De Valois et al 1982). Again, attention
should be drawn to the extremely small sample of scenes (six) used to reach Field's

conclusions.
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Figure 1.12: A possible coding scheme of Field's channels represented in the frequency
domain
and in the space domain. Channels have constant spatial frequency bandwidths in
octaves
and constant orientation tuning in degrees. Taken from Field (1987).

A further attempt to explore the characteristics of natural scenes using alarger sample
of images was made by Tolhurst et al (1992). They analysed the amplitude spectra of
135 digitised photographs of natural scenes and found that relatively few conform
exactly to Field' s suggestion explained above (amplitude o f ). He plotted the
amplitude spectra of hisimagesin double-logarithmic co-ordinates and found that
instead of being a straight line with slope equal to -1, about 25% show significant

curvature and the average slopeis-1.2. He also reports considerably varied slopes from
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-0.8 to -1.5. These findings imply that it would be an over-simplification to consider the
amplitude spectra of natural scenes as essentially the same and represented by:

amplitude oc .

The previous analyses have been performed on achromatic images. In thiswork we
extend this study to the colour domain, examining how these properties vary, both

across the visible spectrum and for chromatic images.

1.5 Luminance and chrominance.

The L-M opponent system can be thought of as signalling a push-pull between
absorption rates of the L and M cone types. The zero output from this signal
corresponds to awhite, grey or black surface. It can also be achieved using a pure
yellow surface (Hurvich and Jameson 1957). Light reflected from pigments with a
relatively strong reflectance at short wavelengths would produce a chromatic output of
one sign whereas light reflected from pigments with relative strong reflectance at long
wavelength will cause a response with an opposite sign. It is possible to determine a
spectral sensitivity curve for this opponent colour system using a hue cancellation
technigue. This technique consists of finding the relative proportions of a mixture of red
(L wavelength) and green (M wavelength) light until the mixture looks neither reddish
nor greenish to anormal observer. The spectral sensitivity curveis produced by
repeating the measurements over different wavelengths (King-Smith 1991). Figure 1.13
shows the resultant spectral sensitivity of the L-M (chromatic) and L+M (achromatic)
system calculated from Smith and Pokorny (1975) spectral sensitivity functions. These
spectral sensitivity curves correspond to a weighted sum and a difference between
spectral sensitivitiesof M and L cones, that is:

Achromsignal = a,.L + a,.M;

Chromsignal = a,.L - a,.M.
where a;, a,, ag, and a4 are weights to be determined (in Figure 1.13 they were
considered as equal to 1 for simplicity). The achrom.signal (or luminance) carries
information about the spatial distribution of light intensity. The chrom.signal (or
chrominance) carries information about the spatial distribution of wavelength
differences. Chrominance therefore refers to the purely chromatic content of the visual

scene, and should be independent of luminance. Different ways of defining
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chrominance satisfy this requirement to various extents. Thiswill be examined in detail

in Chapter 4.

The presence of “+” and “-" signsin the above equations reflect the assumptions that
the responses of L and M receptors are linear. If we assume, for example, logarithmic
responses, the equations above would reflect this fact by changing to:

Achromsignal = L-M and Chrom.signal = L/M.

Several workers support the view that the assumption often made that

8= a7~ 8= 3=1
isonly qualitatively correct. Estimations of the ratio between the weights have been
made based on flicker and acuity criteria (Ingling Jr. and Tsou 1988) and on
information theory based criteria (Buchsbaum and Gottschalk 1983). For simplicity in
this chapter, all the weights will be considered as equal to 1.

Spect. sens. curves (normalized)
Simple definition
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/ .
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o
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Figure 1.13: Spectral sensitivity of L-M and L+M systems. Calculated
from Smith and Pokorny’ s (1975) data.

It is possible to plot the cone absorption (number of photons absorbed) of one cone type
versus another for different natural objects when illuminated by direct sunlight. When
the L and M cone's absorption responses for five common coloured mineral pigments
are plotted in this way they tend to cluster fairy closeto aline called "white line" or
"achromatic line" (King-Smith 1991). Burton and Moorhead (1987) analysed nineteen

natural scenesin terms of the relative absorption levelsinthe L, M and S sensitive

Chapter 1, page 12



cones. Their analysis led to asimilar conclusion. These observations have implications
for the transmission of visual signalsto the brain. If independent signals from the L and
M cone types were sent individually along the optic nerve, the information content of
the scene would tend to be duplicated in the two channels, leading to inefficiency in
transmission. Using only information theory based criteria (Buchsbaum and Gottschalk
1983) it is possible to show that efficient information transmission is achieved by the
transformation of the initial three colour mechanisms (L, M and S) into an achromatic
(L+M) and two opponent chromatic channels (L-M) and (S-(L+M)).

The transmission of achromatic (L+M) and chromatic (L-M) information through the
parvocellular optic nerve neurons has been modelled using a multiplexing scheme
(Ingling Jr. and Martinez 1983). Such a scheme consists of transmitting both signals
within different non-overlapping spatial frequency bands (a similar method to the one
used in AM radio transmission where different radio signals are transmitted in different
non-overlapping frequencies). For this analysis the simple-opponent L-M units that
predominate in primate fovea (Derrington et al 1984a) were assumed to form asingle
channel signalling both chromatic and achromatic information. The problem hereis that
the chromatic and achromatic signals do, however, overlap (Lennie and D'Zmura 1988).
Looking for an efficient decoding strategy, Ingling and Martinez postul ate that it will be
advantageous to know what kind of visual environment the system to be designated
must operate in and to know what the signals are used for. They propose a
demultiplexing strategy that interprets high s.f.'s modulation as luminance and low s.f.'s
modul ation as chrominance and the boundary is decided to be somewhere in the middle.
This demultiplexing is clearly incomplete (e.g. it predicts that low s.f. luminance would
be seen as colour modulation), but is attractive asit is consistent with the attenuation of

high s.f. chrominance perception found by psychophysical experiments (Mullen 1985).

1.6 " Ecological” explanations for the properties of the luminance and chrominance
coding by the h.v.s.

As seen before, there are three major factors (hardware constraints, priorities for
survival and physical content of the environment) that could justify the broad
characteristics of the h.v.s. If we expect the constraints imposed by the environment to
be the most relevant, the facts already known about the h.v.s should correspond with the
statistics of natural images. In particular, the psychophysical results obtained by Mullen
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(see Figure 1.8), should have a correspondence in the statistics of the visual
environment. Specifically, the luminance to chrominance signals ratio of natural images
should be greater than 1 for high spatial frequencies and smaller than 1 for low spatial
frequencies (a more extensive analysis of thisis provided in Chapter 4). Several
workers have been exploring to what extent the characteristics of the visua

environment are consistent with facts already known about the h.v.s. and trying to find a
sort of "ecological” justification of these facts. Following thisline, Derrico and
Buchsbaum (1991) proposed a computational model that decomposes a scene into an
achromatic component and a chromatic component from the L and M initial
components using an eigenvector (Karhunen-Loeve) transformation. They claim that
their model has psychophysical correlatesin the visual system and can be implemented
physiologically using simple combinations of retinal receptive fields. In their analysis of
a set of three scenes they found that the achromatic images contain the high spatial
frequencies and the chromatic images have little or no energy in this range. However,
the small set of scenes used as input for this analysis and the fact that not all of them are

natural, limit the generality of their conclusion.

An analysis of the Fourier energy distribution of the chromatic and achromatic
components was later performed using a larger set of scenes (Brelstaff and Troscianko
1992). The results only weakly support the idea that physiological imbalance between
colour and luminance transfer functionsis reflected in the spatial frequency content of
natural scenes. The authors used the same set of scenes analysed by Burton and
Moorhead (1987) in which, unfortunately, saturated objects like flowers were
deliberately avoided and thus the range of chromaticity valuesis very small. The input
set of scenes was larger (twenty scenes) but arguably still not a representative sampling
of the natural environment due to its very limited gamut of colours. To give an
approximate idea of what we might expect for the lum/chrom energy distribution to be -
assuming that the contrast sensitivity functions (Mullen 1985) reflect somehow the

statistics of the environment- we proceed as follows:

Figure 1.14 shows another plot of psychophysical measurements of the contrast
sensitivity functions for luminance modulation and for isoluminant-colour modul ation
(taken from Mullen 1985). In this case the x-axis have been divided into 8 SF-bands
(similar to those produced by Brelstaff and Troscianko (1992) and to those produced by
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"FBANDS" -see Chapter 2, Table 2.2). Vertical lines represent the boundaries of these
bands in the Fourier space in the plot. The band-pass and low-pass nature of luminance
and chrominance signals are manifest in these contrast sensitivity functions. The area

(integral) under each curve in each interval is calculated and plotted on Figure 1.15.

Notice that the x-axisin Figure 1.14 islogarithmic and because of this the areas
determined by intervals on the right side are much bigger than the areas determined by

intervals on the left side of the graph.
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Figure 1.14: Psychophysical measurement of the contrast sensitivity functions
(Mullen 1985). Sf-bands are represented on the plot by vertical lines.
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Figure 1.15: Value of the integral under the curves of the previous Figure.

Following this, curves on Figure 1.15 are scaled so that the total area under each of the
contrast sensitivity curvesfor al intervals equals 1.Figure 1.16 shows the lum/chrom
arearatio for each band. It also gives an approximate idea of what we might expect to
find in the spatia frequency analysis of the natural scenesif the psychophysical

measurements match the physical properties of the environment.
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Figure 1.16: Luminance to chrominance ratio obtained from
the contrast sensitivity curves (Mullen 1985).

When it comes to model the spatial and chromatic properties of the h.v.s., the
“ecological” approach requires a consistent knowledge of the statistical properties of the
visua environment. Efficiency in representing information in the visual system and its
potential evolutionary advantages plays also amajor rolein this approach (Brelstaff and
Troscianko 1992; Derrico and Buchsbaum 1991; Buchsbaum and Gottschalk 1983;
Field 1987, 1989; Burton and Moorhead 1987; Atick 1992). If one starts from this
"efficiency principle" along with biological constraintsit is possible to predict neura
processing. Thus some of the cortical computational strategies have been proposed from
physical properties of the stimulus environment (Derrico and Buchsbaum 1991;
Buchsbaum and Gottschalk 1983; Field 1987, 1989).
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1.7 Aim of thiswork - The questions.

The aim of thiswork is to report some of the statistical properties of the visual
environment using alarger sample size than has been used before and to relate the
properties to observed characteristics of neural processing (such as the number of initial
colour mechanisms -cone types-, shape and location along the wavelength axis).
Specifically, the questions addressed are the following:

Q1) What is the mean distribution of spectral reflectance and radiance of natural
scenes? Are the Smith and Pokorny (1975) cone sensitivity functions consistent with an

efficient sampling of this mean distribution?

Q2) Isthere any significant variation of the average distribution of spatial frequency
(Fourier content) of natural scenes with wavelength and with spectral bandwidth of the
receptor? Could these variations have determined some of the spatial properties of the

colour receptive fields of the h.v.s.?

Q3) The models of spatiochromatic coding represent the chromatic signal asalinear
combination of L and M cone output. Is there any significant variation of the average
distribution of spatial frequency in terms of chrominance (L-M) related to (a) the
separation in the wavelength axis between L and M receptors and (b) their bandwidth?

Q4) Isthe physiological imbalance between colour and luminance (Mullen 1985)
reflected in the physical spatial frequency content of natural images? Does this depend

on the way we model the opponent interaction between cones?

Q5) Arethe characteristics of the amplitude spectra previously found for achromatic
images similar to those of chrominance (L-M) images? Does this depend on which

definition of chrominance we use to model this opponent interaction?
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Chapter 2

M ethods

Technical background

For this exploration of the statistical properties of the natural environment we require a
representative sample of natural scenes. Thisimplies aso a system for image
acquisition (camera), image processing (computers), storage (disks, tapes, etc.) and
display (monitors). We require for the system to provide a measure of radiance as a
function of wavelength for each pixel of our images. Using this information we
calculate the statistics of the environment and contrast them with some of the known
features of the h.v.s. An ordinary colour (CCD) TV camera seems to be the most
obvious choice except for the fact that it makes use of its own colour model. Colour
models are 3D co-ordinate systems in where each colour is represented by a single point
which facilitates the specification of coloursin some generally accepted (standard) way.
Most colour modelsin use today are either hardware-oriented or applications-oriented
and their assumptions do not represent the world directly. Furthermore, any trichromatic
sampling of this kind does not allow subsequent recoding into, for example, more than
three channels or into channels of varying bandwidths. We wished to have the freedom
to be able to model any possible n-channel sampling where nislessthan 31. Another
possible option is the use of photographic film and a digitizer. Here the process of
calibration is more complicated because the output has to be compensated for the non-
linearities of the photographic process. The main reason, however, for the choice of
video rather than photographic technology was the greater ease of digitising the images

of avideo representation.

In order to provide amore direct (and free of erroneous assumptions) representation of
the natural environment we employ a multispectral digital camera as described in the

following sections.



2.1 The Defence Research Agency-funded multispectral camera

The gathering of all statistical properties of alarge sample of natural visual images used
in this work was made by a video camera capable of recording images through
narrowband interference filters and storing the resultant images on a computer disk. The

development of the camera was funded by the Defence Research Agency (DRA).

The DRA-camera system and controller device were partialy constructed by Custom
Camera Designs Ltd. (of Wells, Somerset) and completed, assembled, calibrated and
operated by members of the Perceptual Systems Research Centre (PSRC) of the
University of Bristol between 1990 and 1993. Originally, it was constructed to achieve

the following aims:

a) To construct an electro-optical (e-0) system capable of representing the spectral

distribution of light in terrain scenes.

b) To validate the e-o system with calibrated images.

2.2 Characteristics of the DRA-camera

The DRA-camera consists of an e-0 mechanism built around a " Pasecon™ tube, a camera
control unit (CCU), acarousel dlide changing filter mechanism, a portable 386-PC, a
real-time video monitor and a battery power supply. The scheme of the DRA-camerais
shown in Figure 2.1. The Pasecon tube was chosen because it has good linearity
throughout the full spectral range and alow-noise output at low light inputs. Figure 2.2
illustrates the camera tube sensitivity between 400 and 800 nm (from manufacturer's
data). The original Camera used to convert the video signal to digital form
(analogue/digital conversion) for storage in the internal frame-store card and then
reconvert to analogue form (digital/analogue conversion) for both display and as input
to the Data Trandation frame card. Given that the final digital/analogue device proved
to be very prone to drift with temperature and since the required images were to be
stored and processed in digital form, digital images were transferred directly from the
camera after the first analogue/digital conversion. A card was designed and built to
enable clean and noise-free images to be transferred digitally directly from the camera's

first a/d converter into the frame-store on the Data Trand ation card.

Chapter 2, page 2



Monitror Filter control mechanism

(real time video)
Camera inside
filter unit
—
= lter
<ﬁRSZ32 serial link

AN

CCuU
Camera Control Unit

Portable PC

with frame
"Grabber" card
e
10 mHz digital >
|
Figure 2.1: Scheme of the DRA-Camera.
Pasecon tube
Spectral sensitivity
1000
P e
e
Y
2 100 \e
<
> <
= N
‘»
& 10
n
1
400 500 600 700 800

Wavelength (nm)

Figure 2.2: Cameratube sensitivity between 400 and 800 nm
(from manufacturer’ s data).

The dlide changing filter mechanism was added to the e-0 mechanism to alow the
DRA-camerato sequentially grab images through a set of 31 optical filters. These are
chromatically narrowband in the range of 400 to 700 nm and with 10 nm spacing
between their peaks. Figure 2.3 shows a plot of transmittance versus wavelength for the
whole set of filters employed. The entire system is controlled by the portable 386-PC
and mounted on atrolley along with a 12 Voltsinverter to supply 240 Volts mainsin
the field. Manual fixed focal length lenses (Fuji CF25B, /1.4, 25 mm) with afield angle
of 28.71 x 21.73 deg were used. The marked aperture settings on the lens are: f1.4, {2,
f2.8, f4, 5.6, 8, f11 and f16.
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A PC program (written in 'C' under MS-DOS 3.0) sends a value for the integration time
(see below) to the DRA-camera control unit which grabs the image and transfersit from
its frame card to the PC frame card. The whole system allows a sequence of 31
chromatically narrowband filtered 8-bit images (256 x 256 pixels x 256 grey-levels) to
be grabbed. These images correspond only to the central part of the visual field supplied
by the lenses. The field angle of this picture isthus equal to 14.35 x 14.35 deg. Given
this, each pixel subtends an angle of 0.056 x 0.056 deg (3.36 arc minutes)
approximately. Thisvalue is of the order of the size of afoveal cone diameter (1 arc
minute approximately). Once recorded, the image set is transferred to an IBM

(RS/6000) workstation for processing.

DRA CAMERA FILTERS
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Figure 2.3: Transmittance of the filters employed.

A graphical user interface (written in 'C' under Al1X on the RS/6000 accessing the
OSF/Matif X-Windows System) allows convenient access to the data as grabbed image
sets. Using thisit is possible to display each image on screen and to display a
spectrograph of the light at the point in the image where the mouse cursor has been
pressed in the display window. Either grey level, radiance or reflectance can be shown
on the graph. Figure 2.4 illustrates this facility. This requires the imagesto be calibrated

for reflectance. This was achieved in the manner described below.
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Figure 2.4: Display window of the IBM-RS6000 employed to process the dataset.

2.3 The DRA-camera calibration

The DRA-camera system was calibrated to write out image files along with relevant
header information such as the integration time and lens aperture from which multi-
spectral light-measurements can be reconstructed. Figure 2.5 shows a measurement of
the system output versus time since system boot. Notice that the minimum time
necessary to ensure a stable output was around 6000 seconds (1hour 36 min). All

measurements described below were obtained several hours after the system boot.
The calibration strategy consisted basically of:

a) Finding for any given filter and aperture setting the number of integration frames

required to achieve areasonably large dynamic range.

b) Correcting the non-linear characteristics of the DRA-camera and the off-axis

variation across the camera target.

c) Converting the grey level output of the DRA-camera into measurements of the

spectral radiance (and spectral reflectance) across the target.
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Figure 2.5: System output versus time since system boot.

(a) Choosing the right dynamic range for each image

Very bright regions like sky and specul arities are not of direct interest, and would
severely compress the dynamic range (0, 255) if properly represented. No sophisticated
strategy was used to identify these bright regions. Instead, the system was created to
allow the adjustment of the integration time until bright regions, other than sky and
specularities, produce responses near to (but not above) the maximum. The real-time
video monitor provided an effective way to identify these bright regions on the field.
For example, it is possible to choose a ceiling value of 254 (in grey-levels) so that 90%
of the recorded scene will not exceed it. Alternatively, it is possible to choose among
nine small square regions regularly distributed on the scene and manipulate its statistics
(e.g. median, mean, maximum). For example, one might select the median value within

the small square region in the centre not exceeding the ceiling.

Once both the statistics (S) and ceiling (C) are defined the algorithm triesto
automatically find the value for the integration time (1T) so that S(IT) is near to (but not
above) C. The accepted difference between C and S can be specified by atolerance
parameter. Given that this calibration is repeated for each filter on the carousel, an
algorithm has been devel oped to accelerate the process. This algorithm can predict a
suitable value for IT using the results of previous attempts, and check if the light levels
change between individual trials. If that happens, the calibration processis halted and
the problem reported.
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(b) Corrections of non-linear characteristics of the DRA-camera

To correct the non-linear characteristics of the DRA-camera, alook up table (LUT) was

produced as follows:

The DRA-camera was pointed to a blank piece of white paper (test card) the radiance of
which was 0.002 WSr™ nm 2 m™ as measured with a TopCon Spectro-radiometer
(model SR1). Thetest card was lit using a steady illuminant, a tungsten bulb with
constant current through it. To avoid possible contributions from light with wavelengths
outside the visible range the 570 nm interference filter was always used and all
measurements were taken in adark room. As Figure 2.2 shows, the camera tube
sensitivity decays drastically in the infrared (IR) part of the spectra ensuring that no IR
radiation will affect the measurementsin spite of any secondary peak the filter could

have in this region. Figure 2.6 shows the apparatus set up.

\ 3 meters
|
White
CCU paper
Camera
PC
Head
Power | | Bulb Control
box
Display
board

Figure 2.6: apparatus set up for calibration.

The system output within the central square region was estimated by varying the
integration time from 1 to 200 frames for all 8 lens aperture settings. This provides a
series of eight curves. To obtain a further eight curves a transmission filter with neutral
density 0.5 was slotted into the camera behind the 570 nm filter. The procedure
described above was repeated 10 times to obtain variability data and 16 exemplary

curves (one for each of the above conditions) were selected and used to create the ook-
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up table.

The same procedure used for calibrating the centre of the scene was repeated for all
nine regions of the scene. An additional set of 8 further regions lying on the perimeter
of the scene was used to provide extra information about the off-axis output. As before,
this data was stored in an off-axis correction file that was simultaneously used with the

LUT to convert the DRA-camera output into light measurement.

(c) Conversions into spectral radiance

This was obtained by matching the output of the DRA-camera through each of its 31
filtersto that of the TopCon SR1 when both systems were pointing to a standard Kodak
grey card. Further measurements of the spectral radiance by the DRA-camerawere
compared to that obtained with the TopCon SR1 using a collage of coloured papers
illuminated with a constant current tungsten lamp. The relative error of the matching
between both systems was | ess than 5% in the range 400-570 nm. In the range 580-700
nm the relative error was bigger but always less than 10%. For one red sheet the match
for some unknown reason was out by as much as 20% in the spectral range 650-700 nm.

Figures 2.7(a) and 2.7(b) provide an example of this matching.
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Figure 2.7(a): Spectral radiance obtained with the DRA-camera
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Figure 2.7(b): Spectral radiance obtained with the TopCon SR1.

(d) Conversions into spectral reflectance

To convert the DRA-camera output into measurements of spectral reflectance, it is

necessary to know the spectral characteristics of the light falling over the scene.
Scene Radiance = Illumination x Reflectance

This information can be obtained by placing an object of known reflectance (like the
Kodak standard grey card) into the scene and measuring its radiance. The algorithm
allows the introduction of the XY position of the grey card on the screen and performs
the conversion automatically. This assumes that light falling over the grey card isan
accurate sample of the light falling over the whole scene and that the reflections are

approximately independent of the subtended angle (Rayleghian or diffuse reflections).

2.4 Scene grabbing

A dataset of 31 scenes was obtained for this analysis between September 1993 and
January 1994. Each of these scenes contains 31 images taken through a different

spectral filter. The normal recording procedure was as follows:

a) Warming up of the DRA-camera systems and battery checking. This was usually
done the day before to ensure that the system would be fully warmed during the

recording. As shown on Figure 2.5 these temperature changes can alter the system
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output.

b) Selection of the place and time of the day for the recording. This was done the day
before (after checking the forecast information). To avoid changesin light because of
changesin sun position, al pictures (except the ones taken inside the lab) were
generally taken around noon. Several places were chosen depending on their facilities
for moving the trolley with the equipment and the drift of people around. Several scenes
were recorded near the Royal Fort House of the University of Bristol, othersin the
University of Bristol Botanical Gardens. Some practical problems that influenced our

selection of the place and daytime will be discussed in the next section.

c) Positioning of the grey card in avisible place in the scene. Most of the pictures (29)
contained no artificial objects with the exception of the Kodak grey card, and (in two
cases) atripod. The card was placed in all scenes for calibration and light checking

pUrpOSES.

d) Recording of the spectral radiance of the grey card using the TopCon SR1. Thiswas
made to detect changes in the spectral characteristics of the light before and after every
picture recording. The measurements were taken from approximately the same place as

that of the DRA-camera and just before starting the proper recording of the scene.

€) Recording of the scene. Considering the relative long time (about 5 minutes) needed
to grab each scene it was often necessary to wait until weather conditions were

acceptable (see next section about practical problems) before starting.

f) Second spectral measurement of the grey card radiance. The procedure was similar

to (d) and was made immediately after finishing the scene recording.

g) A photograph was taken of approximately the same scene to be used as a colour

image reference.

h) Back in the laboratory the grabbed images were transferred into the IBM/6000

workstation for further analysis.

2.5 Common practical problems and their solutions

Most of the practical problems we faced were related to changes in the scene during the

recording. A different solution was formulated for each one.
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a) Linear light changes. These were generally caused by changes in the sun position
during the recording of the scene. These alterations never affected the spectra
properties of the light and were detected by comparing the SR1 measurements before
and after the recording. To avoid them, most of the recording was done around noon
and a specia algorithm "reilluminate” was developed to minimise its effects (see
below).

b) Light fluctuation, mainly due to short-term variations in cloud cover. This generally
affected one or two of the imagesin the scene. To detect them, it was necessary to
compare the SR1 spectral measurements on the grey card with those of the DRA-
camerain the same place. The most effective way to avoid these fluctuations was to
wait until the sky was completely clear or completely overcast before grabbing the

scene. Small errors were corrected with the "reillluminate" program (see below).

c) Small movements of objects (such as tree branches) in the scene during imaging.
These were due to wind and their negative effects were more intense for objects at a
short distance. Negative effects were minimised by grabbing medium and long distance
pictures but often it was necessary to wait for these movementsto cease. All the
naturally lit short distance scenes were taken in the glass houses of the University of

Bristol Botanical Gardensin order to avoid this problem.

2.6 Corrections made by software

The "reilluminate" program was created to correct small light fluctuation and linear
light changes of particular scenes of the dataset. It uses the spectral reflectance image of
the scene along with one of the SR1 measurements (the program allows one to choose
between any of them) taken on the grey card. It "reilluminates’ the scene with the light
spectrum falling over the grey card so that the radiance measured with the DRA-camera
on the grey card matches the SR1 measurement. Appendix A gives adetailed

explanation of its fundamentals along with the DRA-camera mathematical theory.

Modifications of the data were avoided as much as possible and the use of this kind of
correction was limited to five particular cases of the dataset. To decide whether it was

necessary to use this program or not, the following points were considered:

a) Thefit between SR1 measurements taken on the grey card before and after the
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recording of each scene. A specia algorithm (Press et al. 1991) was applied to compare

both spectral measurements.

b) Comparison between the spectral radiance of the grey card as measured by the SR1

and the spectrum obtained by the DRA-camera in the same place.

c) Light and wind conditions on the day when the scene was recorded. This

information was registered in atable for each scene of the dataset.

After correcting a scene, the comparison described in (b) was performed again in order
to evaluate the effects of the "reilluminate” program. However, al further analysesin
terms of Fourier amplitude were performed separately on the corrected dataset and on
the original one, and there does not appear to be a marked difference between both sets

of results.

2.7 Some statistics of the dataset

Although there is no formal agreement about what is considered a representative
sampling of the visual environment, we ensure that (within our limitations) some of the
most common natural objects are represented in our dataset. These include plants with
different shapes, textures and colours, flowers (mostly in bright red colours), trunks,
branches, grass, yellow leaves, trees, bushes, rocks and sky. Some of these objects were
artificially arranged in the laboratory trying to make this arrangement to look as casual
as possible. Others are just images of the British countryside (in which buildings or
other human artifacts were avoided) or of gardens (either taken in the Botanical
Gardens or in the University of Bristol Royal Fort Gardens). Our general aim wasto
generate a set of images which could conceivably be representative of the environment
in which primate vision evolved. Of course, we cannot be sure that we have achieved
thisaim. However, we felt that the inclusion of vegetation seen from different distances
might satisfy this requirement in part. Later on we shall discuss the extent to which our
images (obtained in typical diffuse Northern Temperate illumination) may differ from
images obtained under more directional illumination. Practical constraints limited our
choice of possibleimages. Bright parts such as sky result in large saturated portions of
the image and were deliberately avoided. Only four of our scenes contain regions of

sky. Moving objects such as clouds are al'so avoided. Very strong shadows produced by
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solar illumination move during the period of image acquisition and are consequently
avoided. Water (i.e. lakes, ponds, etc.) is also avoided because both of the bright
reflections and the movement. All the scenes were recorded in Autumn and Winter
(between October 1993 and January 1994) and this can be considered as a limitation in

the range of possible natural colours and textures.

Of the 31 scenes recorded, 29 contained no other artificial object than the grey card, and
in two cases atripod to attach it. These were the ones used in our analysis. The
remaining two included artificial objects and were used to test the quality of the lenses
(asisdescribed in Chapter 5).

Different classifications of the dataset can be performed depending on the characteristic

considered:

a) Intermsof lighting, nineteen scenes were illuminated by the sun (these are called
sun-illuminated), directly or through cloud cover, nine were illuminated by
incandescent lighting and one by fluorescent lighting (these are called artificially-

illuminated).

b) Interms of distance to the main objectsin the scene, four long distance scenes were
taken. This means that the main objects were in the range 0.1-4.0 km. The rest of the
dataset includes objects in the range 0.5-50.0 m (called short-distance scenes).

c) Intermsof the corrections performed, the dataset can be classified in three different

categories:

Corrected scenes (5 in total). "Rellluminate” was used to correct light fluctuation

on several filtered images.

Slightly corrected (14 in total). "Reilluminate" was used to produce the

adjustment of the DRA-camera measurement to that of the SR1 on the grey card.

Without corrections (10 in total) These were also called selected scenesin later

chapters.

2.8 Software tools

Several software tools were developed in 'C' to run on scenes on the RS/6000. The most

frequently used in this analysis were:

Chapter 2, page 13



"DO_LMS": Thisusesasinput the 31 narrowband images that constitutes a given
scene. The program first converts the value of each pixel into radiance or reflectance (as
described in section 2.3) according to a selection by the user. A special option alows
the user to implement the corrections described in section 2.6 (i.e. the “reilluminate”
algorithm). Following this, the program weights each of the 31 monochromatic images
and adds them together to generate each of the L, M, S cone sensitivity images. The
weighting is produced according to the Smith and Pokorny (1975) cone sensitivity
functions (see Figure 1.3) which are normalised to have a maximum sensitivity value
equal to one. The output of this program is a set of three floating-point images, each of

them corresponding to theL, M and S cone sensitivity (see Figure 2.8).

INPUT WEIGHTING OUTPUT

Smith and Pokorny L-Cone
ﬁ L- Spectral Sens. Funct. Sensitivity image

31

monochromatic Smith and Pokorny M-Cone
image set M- Spectral Sens. Funct. Sensitivity image

ﬂ Smith and Pokorny S-Cone
S- Spectral Sens. Funct. Sensitivity image

Figure 2.8: Scheme of the “DO-LMS” agorithm.

"FBANDS": This produces the Fourier amplitude spectra of an image and displaysit as
a 2-dimensional intensity function. For example, if "FBANDS" is applied to a floating-
point image A, the output will be another floating-point image where brightnessis
proportional to the amplitude spectrum of A. In this representation, the distance from
the centre of the image is proportional to the spatial frequency value and the angle from
the horizontal represents the orientation (see Appendix B). Given that the dynamic
range of Fourier spectrais much higher than the display deviceis ableto faithfully
reproduce (255 grey levels), the centre of the plot has been removed. This corresponds
to the highest value and is analysed separately in our analysis (it also represents the
average luminance of theimage A). Figure 2.9 shows a 3-dimensional diagram of the

Fourier amplitude spectra of an image.

Chapter 2, page 14



Figure 2.9: 3-dimensional diagram of the Fourier amplitude
spectra of an image. Taken from Field (1987).

The program also divides the Fourier space into 8 concentric annuli (bands), each of
them representing a given range of the spatial frequency spectrum. The total Fourier
amplitude and its average value within the band (averaged across orientation) are
measured into these bands and the results presented in atable. It is possible to choose
between two different sets of concentric bands, the "linear” and the "logarithmic”.
Tables 2.1 and 2.2 show the range (in pixels measured from the centre of the screen and
their equivalent in cycles/deg) covered by each band in both cases. Figure 2.10 shows a
scheme of this annuli-shaped division. These linear and logarithmic band spacing
produce different results when applied to our dataset (see later in Chapter 5 for amore

extensive discussion of this).

We choose the number of logarithmic bands to be equal to 8 because thisisa
convenient number for dividing the 256 x 256 pixels screen. In this case the minimum
bandwidth corresponds to one pixel (see Table 2.2). To keep the symmetry between

both versions, the number of bandsis equal to 8 in the linear case too.

All the software tools were devel oped by the PSRC between 1991-1993.
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Figure 2.10: Annuli-shaped division of the Fourier
gpace. Linear (left) and logarithmic (right).

2.9 Validity tests

Several validity and repeatability tests were performed to check whether the system

(DRA-camera plus software tools) was working properly.

The DRA-camera output was compared to that of the TopCon Spectro-radiometer for

severa coloured objects to ensure that radiance/reflectance measurements were reliable.

Synthetic images of sine gratings with spatial frequencies of 0.008, 0.1 and 0.5
cycles/pixel were constructed using a special algorithm designed for this purpose.
Following this, they were processed using FBANDS. The amplitude spectrum image
showed the peaks corresponding to the spatial frequencies mentioned above.
Logarithmic bands 2, 6 and 8 respectively showed amplitude values 1000 times greater
than the rest.

A natural image was filtered using a spatial frequency low-pass filter and then
processed using FBANDS. The results showed the corresponding shift in the Fourier
amplitude spectratowards the low spatial frequencies. A similar analysis was performed
using high-pass filters. The data obtained using the "reilluminate” algorithm was
compared with the results obtained without it and the difference proved to be non

significant for this analysis.

Further lab testing of the camera lenses were performed to see whether there is any
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defocus on the blue side of the spectrum that could affect our analysis. These results are

more intensively discussed in Chapter 5.

Table2.1: Linear Bands
Band Range Centre Nb

pixels cycles/deg | cycles/deg Pixels
1 1-16 0.03-1.10 0.57 888
2 17-32 | 110-220 1.65 2516
3 33-48 2.20-3.30 2.75 4116
4 49-64 | 3.30-4.40 3.85 5716
5 65-80 | 4.40-550 4.95 7352
6 81-96 | 5.50-6.60 6.05 8924
7 97-112 | 6.60-7.70 7.15 10564
8 113-128 | 7.70-8.80 8.25 12110

Table 2.2: Logarithmic Bands

Band Range Centre Nb

pixels cycles/deg | cycles/deg Pixels
1 1-1 0.03-0.07 0.05 8
2 2-2 0.07-0.14 0.10 16
3 3-4 0.14-0.28 0.21 44
4 5-8 0.28 - 0.55 0.41 180
5 9-16 0.55-1.10 0.83 640
6 17-32 1.10-2.20 1.65 2516
7 33-64 2.20-4.40 3.30 9832
8 65-128 | 4.40-8.80 6.60 38950

The tables above show the range covered by each
band of the FBANDS agorithm in the 8 bit
representation of the Fourier space and their

equivalent in cycles/degree. The band centreisthe

value used to represent agiven band in al the plots
of thiswork. Nb represents the total number of
pixelsincluded by each band. All conversions were
done using the field of view of the DRA-camera.
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Chapter 3

Physical quantification of spatio-chromatic properties of our dataset

As mentioned in Chapter 1, the quantitative knowledge of statistical properties of
natural signalsisrequired in order to relate "efficiency principles’ and biological
constraints to predict neural processing. The material in this chapter deals primarily
with the exploration of further statistical properties of our dataset. Given the potential
evolutionary advantages of an efficient representation of information by the visual
system, in this Chapter we explore the spatial frequency structure with respect to
wavelength of the dataset and report its properties. This analysis can be separated into

two broad sections;

a) Report on the average variation over wavelength of the magnitude (centre of the

Fourier spectrum diagram) of the signal.

b) Report on the average variation over wavelength of the modulation (Fourier

spectrum not including the centre) of the signal.

Here the term “signal” refers to spectral radiance and reflectance. Given the diversity of
our scenes, it is necessary to normalise the outcome of the statistical analysisto
represent and compare them. A mathematical description of the normalisation is

provided.

The dataset was aso processed to produce new images by adjusting the spectral
bandwidth and the location of a hypothetical receptor aong the wavelength axis through
the visible region of the spectrum. Thiswas done in order to investigate the

consequences of having photoreceptors different from our own.

Further consequences of our findings for spatio-chromatic coding in h.v.s. will be
discussed in Chapter 5.



3.1 Mean spectral distribution of radiance and reflectance across all scenes - Analysis
of the magnitude of the signal

The human visual system isonly sensitive in the spectral region of greatest solar
energy. The sun emits a spectrum that is quite similar to that of a blackbody at a
temperature of about 5777 K. Figure 3.1 (Siegel and Howell 1972) shows the
hemispherical spectral emissive power of ablackbody for several different temperatures
(see top curvein the figure). The coincidence between the peak of the solar energy and
the visible region (between 400-700 nm) confirm that it is an evolutionary advantage
for humans to gather visual information in the spectral region where the solar energy is

maximised.
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Figure 3.1: Hemispherical emissive power of blackbody for several
different temperatures (Siegel and Howell 1972)

CurvesB and Cin Figure 3.2 (Le Grand 1968) correspond to standard illuminants
(energy distributions) of direct sunlight and overcast sky used in colorimetry. Curve A
corresponds to a tungsten (incandescent) source. They also represent spectral
distributions of light reflected from a perfect white surface under these illuminants.

Curves B and C in Figure 3.2 are examples of the typical energy distribution of the light
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that illuminates our outdoor scenes and curve A islike that of the light illuminating our

indoor scenes (with the only exception of one scene illuminated by fluorescent tubes).

200

150

RELATIVE ENERGY
S
(=]
a.

400 450 500 - ) 550 600 650 700
WAVELENGTH, nm

Figure 3.2: Typical energy distributions of light that illuminates our
scenes. A- tungsten (incandescent) source, B- direct sunlight
C- overcast sky (Le Grand 1968).

Most of the light that reaches the eye comes from objects that do not themselves emit
light but rather reflect some portion of the light falling on them. The amount of light
transmitted by a surface (i.e. its radiance) depends on both the quantity of illumination

and its reflectance:
Scene Radiance = Illumination x Reflectance.

The h.v.s. extracts information from the radiance of the environment using
transformations of theinitial three colour mechanisms (L, M and S -see Chapter 1). Part
of these transformations is reflected in the spectral sensitivity curvesfor the
aforementioned luminance (L+M) and chrominance (L-M) channels. Using the DRA-
camera and the TopCon Spectroradiometer, as described in Chapter 2, we were able to

measure both spectral radiance and spectral reflectance in every point of our scenes.

The following section consists of a comparison between the human spectral sensitivity

curves and the mean spectral radiance and reflectance extracted from our scenes.

To obtain the mean distribution of spectral radiance and reflectance across all scenes of

our dataset, the data was processed using the following definitions:
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a) Image (256 x 256 x 8 bit): chromatically narrowband filtered file grabbed using the

DRA-camera. Theindex A is used to indicate centre wavelength in nm: A = 400, 410,
420, ..., 700nm.

b) Scene: each isacollection of 31 filtered images grabbed with the DRA-camera. The
index i is used to indicate each particular scene: i=1,2,3,...,29

c) Dataset: entire collection of 29 scenes recorded as described in Chapter 2.
Given:

S=(, I |

1 i,400 * "i,410 7T T Ii,700')

where S represents a particular scene of our dataset and |, , represents a particular

colour filtered image (31 of which form the scene). The mean radiance within every

image was obtained for all scenes

R R ., R

1,400 ' " 1,410’ A R

1,700

where R , = Mmean radiance of I N

Mean distribution of spectral radiance
averaged over all scenes (29)
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Figure 3.3: Distribution of mean spectral radiance for all scenes.

Figure 3.3 shows the distribution of mean spectral radiance for all 29 scenes and their

standard error. Every point on the plot (one for each spectral filter 1) corresponds to:

Chapter 2, page 4



29
1
R =%2R,

i=1
Figure 3.4 shows the mean spectral radiance for selected scenes: long-distance, short-
distance and artificially-illuminated sets (as described in Chapter 2 section 2.7)
separately. Notice the peaks in the 700 nm filtered image (far red) for all the different
sets. Thiswill be discussed later.

Mean distribution of spectral radiance
Different sets

0.08 -

Radiance (W/sr.m”2)

400 450 500 550 600 650 700
Wavelength (nm)

—— total -8- long distance —< short distance == inlab

Figure 3.4: Distribution of mean spectral radiance for selected scenes: long
viewing distance, short distance, artificially illuminated and total (all).

A similar analysis was performed using the derived mean spectral reflectance of the
scenes. This magnitude is designed to be independent of the illumination, and is shown
in Figure 3.5.

Figure 3.6 (Kirk 1984) shows the reported absorption spectrum of the two most
common types of chlorophyll (denoted a and b). In both cases the absorption has two
maxima, one around 450 nm and a second one at 650 nm. These are aso manifested on
the mean spectral reflectance of our dataset (Figure 3.5) which shows a corresponding

depression around 450 nm and another near 650 nm.

As seen earlier (Figure 3.1) the h.v.s. is optimised to gather information in the regions

of the electromagnetic spectrum where the solar energy is maximised.

If there is an advantage of being more sensitive to the spectral range in which solar
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energy is maximised, it seems sensible for thisto apply within the visual spectrum. Here
we ask: is the spectral sensitivity of the human visual system to some further extent

optimised to gather information from the visual environment?

Mean reflectance
averaged over all scenes (29)

0.15 A

Reflectance

0.05

O T T T T T
400 450 500 550 600 650 700
Wavelength (nm)

Figure 3.5: Distribution of mean spectral reflectance for all scenes.

Absorbance

550 600 650 700
Wavelength (nm)

Figure 3.6: Reported absorption spectrum of chlorophyll a and b (Kirk 1984).

Figure 3.7 (a) shows a comparison between the spectral sensitivity curvesfor the
achromatic (L+M) and chromatic (L-M) pathways and the mean spectral radiance
averaged across al the dataset. The spectral sensitivity curves were produced from the
Smith and Pokorny (1975) cone sensitivity curves using Ingling and Tsou (1988)
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definition of chrominance and luminance. In this definition (see Chapter 1) the
chrominance curve crosses zero at the neutral yellow reference point (580 nm). Notice
the coincidence between the achromatic (L+M) and radiance curves' peaks at 550 nm. It
is also noticeable that the highest value of radiance isin the far-red (and considering the
absorption spectrum of the chlorophyll it is possible in the infra-red) and it does not
correspond to the spectral sensitivity curves. Thislack of sensitivity to the highest value
of spectral radiance in natural scenes may be explained in terms of the "hardware
constraints' discussed in the Introduction, like the increase of photoreceptors noise with

temperature (Aho et al. 1988; Barlow 1988).

Spectral sensitivity
and mean radiance
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Figure 3.7 (a): Comparison between the spectral sensitivity curves and the mean
distribution of spectral radiance of the dataset. The curves were obtained from
Ingling and Tsou’s (1988) definition of luminance and chrominance
(chrominance crosses zero at the neutral yellow reference
wavelength -about 580 nm).

Figure 3.7 (b) shows a similar comparison between the spectral sensitivity curves and
the mean spectral reflectance averaged across all scenes. The achromatic and
reflectance peaks are again coincident except for the dark red peak of the spectral
reflectance. Comparison of derived reflectance is designed to be independent of any

kind of light used to illuminate the scenes.
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Spectral sensitivity
and mean reflectance
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Figure 3.7 (b): Similar comparison between spectral sensitivity curves and
the mean distribution of spectral reflectance of the dataset.

The positive and negative peaks of the chromatic (L-M) curve in both Figures 3.7 (a)
and 3.7 (b) represent wavelengths where the output of the parvocellular L-M channel
(see Chapter 1) has largest magnitude. Noticeable is the correspondence between those
peaks and the shape of the mean radiance and reflectance curves. This may possibly
represent the selective value of having an optimum coincident with the maximum

environmental radiance or reflectance values.

Although the above ideas may seem reasonable, thereisarisk of amisleading

conclusion:

a) The spectral radiance and reflectance environmental average are clearly not the only

factors determining our spectral sensitivity.

b) The shape of the L-M curvein Figures 3.7 (a) and 3.7 (b) could have its biological
significance in optimising the discrimination of colours just different from that of green
leaves (Neumeyer 1991). Best discrimination abilities are represented by the maximum
slope of the L-M curve. In the analysis above no "discrimination task™ was considered

(such asfor example to find ared cherry on a green leafy background).
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3.2 Mean spectral distribution of amplitude spectra (Fourier content) of the radiance
and reflectance scenes - Analysis of the modulation of the signal

In Chapter 1 we discussed how the amplitude spectra of natural images (averaged
across all orientations) was reported to be proportional to f* , wheref is the spatial
frequency and slope o assumes mean values of about -1.0. Thiswas reported by Field
(1987) for luminance (in fact achromatic) images. Tolhurst et al. (1992) found a mean
value of

o= -1.2 for adifferent and larger set of achromatic images. If we assume that this kind
of spatial structure of achromatic images is consistent with the coding scheme of the
cortex our question is: isthis spatia structure a peculiarity of the visual environment
independent of colour? And if not, has the human visual system evolved to cope with a
peculiarity of the visual environment restricted to certain regions of the visual
spectrum? And finally: does the value of o depend on the region of the visible spectrum

considered?

Here we analyse the consistency of the f* relationship across the visible spectrum.

"FBANDS" was applied to each filtered image of every scene of the dataset.

To makeit easier to compare the results across the diversity of our sceneswe

normalised the results in two different ways:

a) Image-based normalisation (€'), in which the Fourier amplitude in each image of

every sceneis given equal weight when the results are averaged.

b) Scene-based normalisation (€”), in which the Fourier amplitude in each scene of

the entire dataset is given equal weight when the results are averaged.

A formal description of these normalisations referredto as €', €' respectively, is given

in the next section. In the section after that, the results are described.

3.2.1 Mathematical description of the normalisation notation__________________ _____

In this section we use the same mathematical notation as in the previous one. To

maintain the consistency, it is necessary to add two new definitions:

a) SF band: each of the spatial frequency bandsin which the program "FBANDS"
divides the Fourier space as described in Chapter 2. To indicate them we used the index
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b:b=1, 2,3, ..., 8 where 1 corresponds the lowest SF band and 8 to the highest SF
band in the Fourier space. See Tables 2.1 and 2.2 for the corresponding valuesin
cycles/deg.

b) Number of pixelsin each SF band: this can vary depending on the alternative
version of "FBANDS" used (logarithmic or linear) and the band "b" considered. The
index used is Ny For the linear version: N,= (888, 2516, 4116, 5716, 7352, 8924,
10564, 12110) and for the logarithmic version: Np,= (8, 16, 44, 180, 640, 2516, 9832,
38950). See Figure 2.10 and Tables 2.1 and 2.2 on Chapter 2 for more information.

Using the above notation, the total Fourier amplitude spectrain band b of image A in

scenei is denoted: EbM

Absolute values of Fourier amplitude spectrum vary notably from one scene to other
and even from one image to another in the same scene. The two different normalisations

used to compare Fourier amplitude across wavelength are:

Image-based normalisation: the value of Ey, ; is normalised so that the total Fourier

amplitude spectra corresponding to each image is the same (unit).
Eu

8
Z bei
b=1

Scene-based normalisation: similarly, in this second normalisation the total Fourier

r—
Ebki -

amplitude spectra corresponding to each scene is the same (unit).

Eji = 7 Egm
Z Ebki
A=400 b=1

To make the resulting amplitude spectrum per band easier to compare across bands and
to relate with previous findings for achromatic images (Field 1987, Tolhurst et al. 1992)
the average amplitude within each band is compiled. Thisis equivaent to the amplitude
spectra averaged across orientations as mentioned in the previous studies. To do thiswe
divide the normalised amplitude spectra of each band by the number of pixels within the

band.
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! 4
Ef _ Ef.

Cni = Nb; Ao Nb

These definitions of normalised amplitude spectra (€ and €” ) were applied to the

radiance and reflectance scenes and averaged over the dataset, i.e.

] = ﬁze{m
g =w e

where N = total number of scenes (29). € and €” are the magnitudes we use to show

average spatial structure across the dataset.

322 Average distribution of € and €7, Radiancescenes- Results
Figures 3.8 (a) and 3.9 (a) show for radiance, the distribution of averaged Fourier
amplitude over wavelength for each of the eight SF bands. In Figure 3.8 () the average
is computed according to image-based normalisation so the quantity plotted is € (as
defined in the section above). In Figure 3.9 (a) the average is computed according to

scene-based normalisation so the quantity plotted is €” (also defined above).

In order to obtain values evenly distributed along the spatial frequency axis (not
bunched at the high frequency end) the logarithmic version of "FBANDS" is applied in

al cases.

To show the dimension of the Fourier space, alogarithmic axisis added in Figures 3.8
(b) and 3.9 (b). The central spatial frequency in cycles/degree of each SF band is
outlined to identify it in the spatial frequency axis.

In Figures 3.9, the values corresponding to the centre of the Fourier space (mean value
of radiance of each filtered image) were included in the graph as band 0. These values

areidentical to those in Figure 3.3 but are here plotted logarithmically.
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Figure 3.8 (a): Variation of the average amplitude spectra (€’) across the visible
spectrum for all SF bands. Image-based normalisation and radiance scenes.
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Figure 3.8 (b): 3-dimensional plot of the Figure above. One of the axes displays
the central value of spatial frequency (in cycles/deg) corresponding to the SF bands.
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Average amplitude spectra
Radiance Scenes. Scene-based norm.

Average amplitude spectra
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Figure 3.9 (a): Variation of the average amplitude spectra ( €") across the visible
spectrum for each SF band. Scene-based normalisation and radiance scenes.
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Figure 3.9 (b): 3-dimensional plot of the previous Figure. One of the axes displays
the central value of spatial frequency (in cycles/deg) corresponding to the SF bands

From Figures 3.8 and 3.9 notice the following features:
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a) Theaveraged Fourier amplitude always decreases as the spatial frequency increases.
Thisisindependent of the wavelength considered (the horizontal linesin Figures 3.8 (a)

and 3.9 (a) never cross each other).

b) Thisdecrease can be described by therelation € = k.f* , where o takes values
between -1.0 and -1.2 (mean o= -1.10, std= 0.03). The 3-dimensional plot in Figures 3.8
(b) and 3.9 (b) show a surface composed of roughly straight lines lying along the spatial

frequency axis.

c) The average amplitude spectra corresponding to the highest SF band (band 8) is

slightly smaller than expected from the relation € = kf" (the plotted surface drops).

Scene-based normalisation (Figures 3.9) constrains fewer degrees of freedom, so the
plot islessflat than in Figures 3.8.

323 Averagedistribution of € and €’. Reflectancescenes. .
All the previous measurements were repeated for the reflectance scenes. Figures 3.10
and 3.11 show the variation of average amplitude spectrain image-based normalisation
(e') and scene-based normalisation (€ ) respectively for them. The logarithmic version
of "FBANDS" was again used. The results are similar to those described before
(approximately constant distance between the curves and no crossings) for both
normalisations. The value of slope o is again calculated and the mean is o= -1.10, std=

0.04.

The most significant difference between average Fourier spectrum for radiance and
reflectance scenesis denoted in Figures 3.9 and 3.11 (scene-based normalisations). The
latter one varies less across wavel ength than the former one. Thisis because radiance
scenes include scenes illuminated using tungsten lighting whose spectrum is described
in Figure 3.2. The influence of tungsten isto raise the values of average Fourier
amplitude when the wavelength increases. The reflectance scenes are designed to be

independent of the kind of illumination used.
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Figure 3.10 (a): Variation of the average amplitude spectra (€’) across the visible
spectrum for all SF bands. Image-based normalisation and reflectance scenes.
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Figure 3.10 (b): 3-dimensional plot of the Figure above. One of the axes displays
the central value of spatial frequency (in cycles/deg) corresponding to the SF bands.
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Average amplitude spectra
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Figure 3.11 (a): Variation of the average amplitude spectra ( €") across the visible
spectrum for each SF band. Scene-based normalisation and radiance scenes.
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Figure 3.11 (b): 3-dimensional plot of the Figure above. One of the axes displays
the central value of spatial frequency (in cycles/deg) corresponding to the SF bands.

3.2.4 Quantification of the slope (o) acrosswavelength . ___
For radiance and reflectance scenes, the slope (o) varies with wavelength. Figure 3.12
shows how the mean slope varies for the curves displayed in Figure 3.9 (the values of

band O were not included). Notice how the slope a. is closer to the value a= -1 for
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wavel engths between 580nm and 640 nm. Standard error of the mean o wasincluded in
the plot. A similar shape was obtained for radiance and reflectance scenes using both
scene and image-based normalisation.

Average value of the slope
Radiance. Scene-based normalisation

-1.04

-1.08

-1.12

Value of the slope

-1.16

-1.2

400 460 520 580 640 700
Wavelength (nm)

Figure 3.12: Mean value of the slope (a) across the wavelength. Radiance scenes
and scene-based normalisation were employed. The standard error
isalso shown in the plot.

From Figure 3.12 notice the following:
a) The average slope across the visual spectrum is o= -1.10, std=0.03.

b) Slopestend to be less steep than the average for values of wavelength greater than
530 nm. For wavelengths smaller than 530 nm, the values of o are steeper than the

average.
c) Thevauesof a closest to -1 are between 570-640 nm.

Thetrend of the plot in Figure 3.12 is strongly influenced by the presence of sky in four
of the scenesincluded in the average. These scenes (Iabelled as long-distance scenesin
Chapter 2) show steeper slopes (a is close to -1.3) in the range 400 to 520 nm and
values of a closeto -1.1 in the range 640 to 700 nm. Although originated in the
presence of sky, thislack of Fourier energy in the high frequency range of the blue side
of the spectrum might provide an explanation for the lower number of blue conesin the

retina, their wider spacing and their absence in the fovea.
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The former sections provide arough description of the spatial frequency structure of our
dataset across the visible spectrum. Some of the characteristics of the structure found
for filtered images within the range 570-640 nm are similar to those reported for
achromatic images (Field 1987). However, from Figure 3.12 it is clear that Field's
assumption of absolute scale invariance is only afirst approximation -an over-

simplification. In Chapter 5 we will explore the consequences of these findings.

3.3 Variation of € and €”" with spectral bandwidth of the receptor

Results given in the previous section suggested that the statistics across the visible
spectrum even if not completely scale-invariant, are close to it, with the amplitude
spectrain general decreasing monotonically with the spatial frequency. The data
explored above isfor chromatic bandwidth of about 10 nm. The human visual system
gathers information through three receptors (L, M, S cones) which have bandwidths of
the order of 100 nm. Some of the specifications of the shape and disposition of these L,
M, S fundamentals can be understood in terms of the constraints imposed by the
environment. For example, receptors must be spectrally wide and must overlap in order
to best discriminate spectral colours. Our question at this point is: could the scale-
invariance structure of the environment play some role in these specifications, such as
for example limiting the spectral bandwidth of the receptors to provide optimal
information coding? Are the average amplitude spectra of natural scenes till
proportional to f* when the spectral bandwidth of the receptors increases? And is this
true across the whole visible spectrum? The L, M and S cone fundamentals are not
equally spaced along the visible spectrum. However, for agenera analysis, we process
the data from our scenes in order to produce an output similar to three hypothetical
receptors equally spaced along the visible spectrum. Following this, we explore how the
Fourier amplitude spectra of the images produced by these receptors vary depending on
the bandwidth of the receptors. The range explored goes from avery narrow band (10

nm) to the order of an L,M,S receptor bandwidth.
Here we use the same notation as in the former sections. More definition is required:

Receptor: combination of agiven group of images belonging to the same scene, is
denoted:
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A?\, c+(b=AL)/2

b - b I7h ’
A=c—(b-AN)/2

where AL = 10 nm, c isthe centre of the receptor and b is the receptor bandwidth.

For example, the combination of the images ls40 ,1650 and lseo iS represented by the

receptor centred in c=650 with a bandwidth b = 30 nm and denoted:

[o2]
o

6

L

1
Res030 = 3 A

A

2 []

Given that we are only interested in variations of the Fourier structure with bandwidth
of the receptor, the region of the visible spectrum in which thisis placed is not of
primary interest. In the previous sections all the images had 10 nm bandwidth and are
evenly distributed along the visible spectrum. Here the centre ¢ of such images

(receptors) is selected to have the following equidistant values:
¢ =450, 550 and 650 nm
and the following spectral bandwidths (b):
b =10, 30, 70 and 110 nm.
To reduce any influence of the illumination, we used reflectance scenes.

The logarithmic version of "FBANDS" was applied to these receptors. The results were
averaged as described in the previous section to obtain € (image-based normalisation)
and €" (scene-based normalisation). Figure 3.13 shows a plot of the average amplitude
spectra using image-based normalisation (€") of the Raso:30, Rss0,30., Reso,30, receptorsin
each of the SF bands. The features observed in the spectrally narrowband images on
Figures 3.8 to 3.11 are present again, when plotted on double-logarithmic co-ordinates.
‘€ decreases approximately linearly as the spatial frequency increases. The slope (o) is
again consistent with the previous findings (a.=-1.12, a=-1.10 and a.= -1.07 for Ras030,
Rss0.30., and Reso 30 respectively). The same characteristics were found for scene-based

normalisation (€").

The plot in Figure 3.13 shows that €' can be described using kf” for all the receptors

examined. A more precise account of small differencesin the spatial frequency structure
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when the spectral bandwidth of the image increases can be obtained from Figure 3.14.
The curves represent different receptors centred in c= 650 with spectral bandwidth b
=10 nm, 30 nm, 70 nmand 110 nm. Figures 3.15 and 3.16 correspond to asimilar
analysis of the receptors centred in c= 550 nm and 440 nm respectively.

Average amplitude spectra
Receptors, b=30 nm

0.01

0.001

1E-4

1E-5

1E-6 c= 650 nm

Average amplitude spectra

0.10 0.21 ol c=550 nm
’ 0.83

1.65 Receptor
Spat.freq.(cycles/deg

b=30nm

c=450 nm

6.60

3.30
)

Figure 3.13: Variation of € for the blue, green and red receptors. Bandwidth
of all receptors b= 30 nm. The centres were c= 450, 550, and 650 nm
for the “blue’, “green” and “red” receptors respectively.

Table 3.1 shows how the values of the slope (o) vary according to the bandwidth of the
receptor considered (with o taking values between -1.07 and -1.15). The standard
deviation corresponding to the average over the dataset was a so included.

Valueof thedopea | ¢=650nm €c=550nm c=450nm
b=10nm -1.06 + 0.06 -1.10 + 0.06 -1.14+ 0.04
b=30nm -1.07+£0.12 -1.10+£0.13 -1.13+0.17
b=70nm -1.08+0.13 -111+£0.13 -1.14+0.17
b=110nm -1.09+0.12 -1.12+0.14 -1.15+0.17

Table 3.1: Vaue of the slope (o) and standard deviation for
receptors centred in c= 650, 550 and 450 nm and bandwidth b=
10, 30, 70 and 110 nm

In general, Table 3.1 shows adlight tendency for the average value of a to decrease

when the bandwidth increases. Again the nearest to unit slopes (o) correspond to the c=
650 nm and c= 550 nm receptors.
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Figure 3.14: Variation of the average amplitude spectra ( €) with the SF bands.
Each plot represents a different spectral bandwidth (b) of the
“red” receptors (b= 10, 30, 70 and 110 nm).
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Figure 3.15: Similar plot as the above but considering only
“green” (c =550 nm) receptors.
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Average amplitude spectra
"Blue" (c= 450 nm) receptors
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Figure 3.16: Variation of the average amplitude spectra ( €) with the SF bands.
Each plot represents a different spectral bandwidth (b) of the “blue’
receptors ( b= 10, 30, 70 and 110 nm).

Apparently there is no evidence of remarkable changes in the structure of the Fourier
amplitude spectrum with the increase of the bandwidth of the receptor considered. To
see whether the changes of the value of o in Table 3.1 have any statistical significance,
we tested the equality of the valuesin each column. Student’ s t-test (Dunn and Clarke
1987) was applied to the largest difference in each column using a 95% confidence
interval and the results showed that there is no significant variation between the mean

values of a.
The consequences of these findings for the human visual information coding will be

discussed in Chapter 5.

3.4 Variation of the average amplitude spectra ( €') in terms of chrominance (L-M) with
the separation between L and M in the wavelength axis

In Chapter 1 we mentioned the concept of chrominance as alinear combination of the
Smith and Pokorny L and M cone responses. The information extracted from the visual
environment using this particular combination of spectral receptors depends on the
spectral bandwidth of the receptors and on their location along the visual spectrum.
Changes in the Fourier content of the environment produced by any combination of

receptors could lead to inefficiency in the coding scheme of the visual cortex. Here we
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explore to what extent the bandwidth and the location of the actual L and M cone
fundamentals in the visible spectrum may have been determined by variationsin the

regularity of that structure.

We analyse the Fourier amplitude spectrum of our dataset using an analogous
combination of the “red” (c= 650~ 570 nm) and “green” (c= 550 nm) receptors. The
central wavelength of the “green” receptor isfixed at c= 550 nm whilst that of the “red”
one varies, taking values of c= 650, 630, 600 and 570 nm. The bandwidth of both
receptors was also modified, having values of b= 10, 30, 70 and 110 nm.

Precisely, the combinations were:

RSSO,lO - I:2650,10 R550,30 - R650,30 R550,70 - R650,70 R550,110 - R650,110
RSSO,lO - R630,10 R550,30 - R630,30 R550,70 - R630,70 R550,110 - R630,110
RSSO,lO - I:2600,10 R550,30 - RGOO,SO R550,70 - R600,70 R550,110 - I:2600,110
RSSO,lO - I:2570,10 R550,30 - R570,30 R550,70 - R570,70 R550,110 - I:2570,110

All methods employed in this section are analogous to those used in the previous

section.

The value of the average amplitude spectra (€') for image-based normalisation is
plotted in Figures 3.17 to 3.20 for all "red-green" images above. Figure 3.17 shows how
the dlope of €' vs. spatial frequency varies when the centre (c) of the "red" receptor
takes the values 650, 630, 600 and 570 nm. Receptors of b = 10 nm width were used.
Figures 3.18, 3.19 and 3.20 show the same for receptors of b = 30, 70 and 110 nm width
respectively. All these figures exhibit a similar structure of the Fourier amplitude
spectrum to that of the previous sections. However the slope varies depending of the

distance between the receptors considered.

All the plots seem again to be described by the function amplitude = k.f“ with the only
exception being the value corresponding to the highest spatial frequency band
examined. Asin the previous section, all the values of the coefficient o and its standard
deviation for all the curves plotted on Figures 3.17 to 3.20 are displayed on Table 3.2.
The first row shows the values for the spectral bandwidth (b) of the receptorsinvolved

in the combination (10 nm, 30 nm, 70 nm and 110 nm) and the first column shows the
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values for the centre (¢) of the “red” receptor (570 nm, 600 nm, 630 nm and 650 nm).

Again we performed Student’ s t-test to see whether the difference between the valuesin
Table 3.2 are statistically significant. The test was performed between the largest
difference of the value of o in each row and in each column on Table 3.2 using a 95%
confidence interval. All differences proved to be statistically significant under these
conditions. Notice that a is closer to the value o = -1 when the distance between the
"red" and "green" receptor increases and when the bandwidth of the receptors
considered increases. This might have some implications for the h.v.s. since the
optimum value (o = -1) is achieved by spectrally separating the receptors and
broadening their bandwidths. Given that L and M receptors are not, in fact, spectrally
separated, we deduce that there might be a more compelling reason for doing this which
is not considered here. The tendency shown in Table 3.2 might not be significantive

enough to determine the evolution of the h.v.s. Thisis discussed later in Chapter 5.

Red - Green. Average amplitude spectra
Receptors bandwidth: b =10 nm
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Figure 3.17: Variation of the average amplitude spectra ( €) with the SF bands.
Each plot represents a different centre (c) of the “red” receptor (c= 650, 630,
600 and 570 nm). Bandwidth of the receptors considered b= 10 nm.
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Red - Green. Average amplitude spectra
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Figure 3.18: Variation of the average amplitude spectra ( €) with the SF bands.
Each plot represents a different centre of the “red” receptor (c= 650, 630,
600 and 570 nm). Bandwidth of the receptors considered b = 30 nm.
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Figure 3.19: Similar plot as the above but considering receptors b= 70 nm.
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Red - Green. Average amplitude spectra
Receptors bandwidth: b=110 nm
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Figure 3.20: Variation of the average amplitude spectra ( €) with the SF bands.
Each plot represents a different centre (c) of the “red” receptor on the visible
spectrum (c= 650, 630, 600 and 570 nm). Bandwidth of the
receptors considered b = 110 nm.

Value of the slope o b: receptor’sbandwidth
c: centreof the 10 nm 30nm 70 nm 110 nm
“red” receptor
650 nm -0.98+0.15 -1.01+0.13 -1.02+0.15 -1.02+0.14
630 nm -095+0.14 | -098+0.149 | -1.01+£0.14 -1.02+0.15
600 nm -090+0.14 | -095+014 | -0.99+0.14 | -0.98+0.15
570 nm -0.76 £ 0.12 -0.83+0.12 -0.91+0.15 -094+0.14

Table 3.2: Slope (o) and standard deviation for combinations of “red” and

“green” receptors of different bandwidth (b) and different centres (c).
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Chapter 4

Applying existing analysis to the new dataset

Chapter 1 outlined some conclusions about the statistics of natural scenes based on a
relatively small sample of the natural visual environment. In some cases (Burton and
Moorhead 1987; Brelstaff and Troscianko 1992) the gamut of colours was very limited
and in others (Derrico and Buchsbaum 1991; Field 1987) the number of scenes was
arguably small. Even in one of these cases, (Brelstaff and Troscianko 1992) the results
were clearly inconclusive. The acquisition of anew dataset of 29 natural scenes
generates a new opportunity for extracting information that may further test these

analyses.

4.1 Analysis of colour and luminance information in natural scenes

The question arises as to which aspects of human vision we wish to compare with the
statistics of our images. We have three receptor types (L, M and S) and our vision
differsin the fovea and the periphery. However, S-cones are absent from the fovea,
which is arguably the most important area of the retina. Furthermore, Mullen (1985)
investigated foveal vision and the main aim of our work was to compare image statistics

with her results. Therefore, we limit our analysis to the responses of the L and M cones.

In a spatial-frequency analysis of a set of 20 colour slide scenes, Brelstaff and
Troscianko addressed the question: is the physiological imbalance between colour and
luminance transfer functions reflected in the s.f. content of natural scenes? To this end
luminance and chrominance images were defined as linear combinations of the Smith
and Pokorny L and M cone response images (their analysis was restricted only to L and

M cone responses):
Lum=a L +a, M; Chrom:agL -a, M
using the following three definitions:

(a) Simple definition:



a

1T (= = g, = 1

Lum=L + M; Chrom=L -M

(b) Ingling and Tsou (1988): estimations of the ratio between the coefficients were

derived using aflicker and acuity based criteria.
a/a, =102 aja, =041

Lum=102L +M: Chrom=041L-M

(c) Buchshaum and Gottschalk (1983): coefficients were derived using an information

theory based criterion.

a= 0.887; a,= 0.461;
a= 0.46; a,= 0.88.

Lum=0.887L +0.461M; Chrom=046L -0.88M

The same definitions are computed for our dataset of 29 multispectral scenes by the

following five stages:

a) "DO_LMS" (see Chapter 2) is applied to each of the radiance scenes. Three images

(L, M and S) are obtained for each of the scenes.

b) Two of the three output images (L and M) are linearly combined as described in (a),

(b) and (c) to obtain the luminance (lum) and chrominance (chrom) images.

c) For every lumand chromimage, a Fourier amplitude spectrumimage is derived
using "FBANDS" (see Chapter 2). The centre (mean luminance level) of thisimageis
removed. Both Fourier spectrum images are scaled so that each contains total amplitude
equal to unit in the spatial frequency spectrum. The proportion of the total Fourier
amplitude present in each band within the "logarithmic" set of concentric bandsis

measured.

d) Theratio of the lumimage amplitude to that of the chromimage amplitude is plotted
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for each spatial frequency band.

Lum/Chrom ratio
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Figure4.1: Average ratio of the lumimage amplitude to that of the chrom
image amplitude for all the dataset. The three definitions are used.
Standard error is shown on the plot.

Figure 4.1 shows the average for all 29 scenes using the three definitions of lumand
chrom. The numbers on the x-axis are converted from the Fourier amplitude spectrum
image (cycles/pixel) to cycles/deg. The spatial frequency limit of 128 cycles/image
width corresponds to the Nyquist frequency of the frame store sampling process (i.e. 0.5
cycles/pixel). Considering that the total image width corresponds to 14.58 deg of visual
angle (data obtained from the DRA-camera lens), the highest spatial frequency that our
system is capable of resolving is 8.78 cycles/deg. The standard error is also shown in all

plots.

To check whether the results have something to do with the original quality of our
scenes, we plot similar amplitude ratio (lun/chrom) corresponding to scenes without
any correction (selected set). The simple definition (a) is used. Figure 4.2 shows that the
trend of the plotsis basically similar. The selected set is dlightly shifted down in the
range of low spatial frequency.

Chapter 4, page 3



Lum/Chrom ratio
Selected (10) set

14

—_

selected
——

1.2 H— fi total

lum/chrom
-

0.8 — T —— T

0.01 0.1 1 10
Spatial freq. (cycles/deg)

Figure 4.2: Average ratio of the lumimage amplitude to that of the chromimage
amplitude for scenes without any correction (selected set) and for the rest of the
scenes (total). The simple definition of luminance and chrominance is used.

The values of the plot change considerably when the average for the long distance (see
Chapter 2) set of scenesis plotted (see Figure 4.3). In this set most of the objects (trees)
arein the range 0.1~4.0 Km and there is a considerabl e proportion (50% approx.) of
grass and sky in the scene. Figure 4.3 shows that the proportion of Fourier amplitude in
lumto that of chromfor low spatial frequenciesis much higher in those scenes. The
absence of any long distance scenes justifies why the selected set is |ess stegp than the
rest in Figure 4.2. This selected set of scenes only includes scenes taken in ideal

conditions (mainly inside the lab) which is not the case for the long distance scenes.

Considering that the results obtained for the long distance set (4 scenes) are
considerably different from the rest of the scenes, we decide to analyse both groups

separately. The following analyses are performed using only the short distance set.

The average for the outdoor (sun-illuminated) and indoor (artificially-illuminated)
image set is plotted on Figure 4.4. No noticeable difference was found between these
Sets.
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Figure 4.3: Average ratio of the lumimage amplitude to that of the chromimage
amplitude for the long-distance viewing set (objectsin therange 10 mto 4 Km
and including grass and sky) and the short-distance viewing set
(objects up to 10 m far away from the camera).
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Figure 4.4: Average ratio of the lumimage amplitude to that of the chromimage
amplitude for the outdoor (sun-illuminated) and the indoor
(artificidly illuminated) sets of scenes.

InFigures4.1, 4.2, 4.3 and 4.4 the trend is always the same: Fourier amplitude in lum
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images is proportionally higher than in chromimages for low spatial frequencies (0.03 -
2 cycles/deg). Thisratio changes for high spatial frequencies (2 - 8.7 cycles/deg).

In the case of the long distance set, this tendency is considerably increased. To clarify
thisview, al short distance scenes were again divided into different groups (outdoor,
indoor and selected) and plotted together with the total average (all groups) in Figure

4.5. There does not seem to be any difference between them.
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Figure 4.5: Average ratio of the lumimage amplitude to that of the chromimage
amplitude for short-distance scenes. These scenes are divided again into different
groups (outdoor, indoor and selected) and plotted along with the average for all
groups (total). The standard error is also shown in the plot for the total group

All our analyses (Figures 4.1 to 4.5) show an entirely different relationship from that
expected if psychophysical measurements of contrast sensitivity functions (see Figure
1.16 in section 1.6 of the background Chapter) had an “ecological” explanation. The
expectations from Mullen’s (1985) results especially disagree with the results for the
long distance image set.

Our results clearly show that there is no rationale for the differences in human contrast
sensitivity thresholds for lum and chromin the statistics of our dataset. A more general

discussion about these findingsis found in Chapters 5 and 6.
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4.2 Analysis of colour and luminance information in natural scenes using a shadow-
removing definition.

Most of the time, natural scenes vary across their extent in both colour and luminance.
Sometimes, they covary spatially, but most of the time their distributions are only
partialy correlated. For example, consider a uniformly red and bright object upon an
uniformly green and dark background. In this case both colour and luminance share the
same spatial distribution, but normally objects reflect light from a distant source (like
the sun) and thus the illumination casts shadows (Iluminance discontinuities) in the

world.

In general this shadowing only produces small changes in the colour of the light
reflected by an object. For example, objects in the shade under sunlight illumination
reflect higher proportion of light scattered by the atmosphere that is more skewed
toward the short wavelengths (bluish light) than objects under direct sunlight. This
changein colour istrivial compared with the massive change between the intensity of
the light reflected by objects directly illuminated by the sun and by scattered light.

In asituation like the above, the spatial distribution of wavelength differences
(chrominance) would give a more realistic representation of the real world than the

gpatial distribution of intensity differences (luminance).

Imagine a shadow over alarge coloured surface. It contains high spatial frequencies
Fourier energy in both luminance and chrominance. If we remove the shadow on the
chromimage using a specia definition of chrominance, the final chromimage will
contain less energy in the high spatial frequency range. From thisit follows that the
world may be richer in high sf Fourier energy in luminance and in low sf Fourier energy
in chrominance. Thisiswhat we expect from Mullen’ s measurements as mentioned in
Chapter 1.

To account for the fact that none of the definitions of colour used in thiswork so far is
independent of the effect of shadowing, here we include an extra definition of
chrominance which removes the shadowing over our scenes. The shadow-removing

definitions of luminance and chrominance are:
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Lum=L+M; Chrom=(L - M)/ (L + M)

The definitions above were tested on a special scene consisting of some vertical
coloured cards (red, green, blue, grey and brown). The scene was illuminated by a
projector which had a dlide in its gate such that the top of the scene was clear and the
bottom had aND filter. The corresponding L and M images were obtained and
combined using the simple definition and the above definition of chrom. Following this,
the values of chrom between the directly illuminated (top) half of the image and the
shadowed (bottom) half were measured in all coloured cards for both definitions:

Simple definition: chrom= L-M

brown red blue green grey
bright half 0.00065 0.00047 0.0037 0.00036 0.00064
shadowed half 0.00040 0.00031 0.00023 0.00024 0.00043
Shadow-removing definition: chrom = (L-M)/(L+M)
brown red blue green grey
bright half 0.329 0.429 0.260 0.302 0.317
shadowed half 0.330 0.429 0.256 0.304 0.309

These measurements show an effective removal of the shadow in the second image.

Lum/Chrom ratio
All scenes - (shadows removed)
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Figure 4.6: Average ratio of the lumimage amplitude to that of the chromimage
amplitude for the shadow-removed scenes. This average is done
across al the dataset.
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Working with the shadow-removing definition of chrom, we repeat our measurements
as described in the previous section. The lumto chrom average is similarly obtained for
all scenes and Figure 4.6 shows the results. In this Figure we see that the basic features
obtained for the other definitions still remains here: for low spatial frequenciesthereis
relatively more luminance than chrominance information. Thisis reversed only for the
highest spatial frequency considered in the plot (the value of lum/chrom islower than
1). The only notable new feature is the sagging of the plot. Using the previous

definitions this was slightly pronounced in the opposite direction.

From this we conclude that shadowing does not affect the broad conclusions obtained in

the previous sections.

4.3 Analysis of the Fourier amplitude spectra of lum and chrom images

Another analysis of the spatial frequency content of natural scenes has been carried out
by Field (1987). He relates the statistical structure of the environment to the coding
properties of the visual system (see Chapter 1). Field derived the amplitude spectrafor
six achromatic images (equivalent to the "FBANDS" analysis mentioned on Chapter 2).
He found that the amplitude spectrum of theseimagesis greatest at O spatial frequency
(the mean intensity of the image) and falls off quickly by afactor of roughly f ™ (where f
is spatial frequency). Thisisastraight line with slope o = -1 when plotted on double
logarithmic co-ordinates. This leads to an invariance in frequency content when

magnifying any part of an image (See Chapter 1 and Appendix B).

Other workers (Tolhurst et al. 1992) examined the amplitude spectra of 135 digitised
photographs of natural scenes and found that relatively few of them follow the previous
statement. They suggest that the average slope of the Fourier amplitude spectrawhen
plotted on double logarithmic co-ordinatesis o = -1.2 (steeper than the one suggested
by Field).

Following the above, the lum and chrom images were obtained from every scene of our
dataset and subjected to ssimilar analysis. The goal here is to find whether they show
similar statistics and to estimate the average value of the slope (o). Notice that both
Field and Tolhurst et al. applied their analysis only to an achromatic image set. Our

analysisisasfollows:
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a) "DO_LMS" (see Chapter 2) is applied to each of the reflectance scenes again and
two of its output images are combined using the simple definition
(lum= L + M, chrom= L - M).

b) The Fourier amplitude spectraimage is derived for every lum and chromimage
using "FBANDS" (see Chapter 2). The centre is again removed. Both Fourier images
are scaled so that each contains unit amplitude in the total spatial frequency spectrum.
The average amplitude spectrum (averaged across orientation) within each band of the
“logarithmic” set of concentric bands is measured. The logarithmic set of bands was
chosen because it provides an even distribution of the sampled data when plotted along

the logarithmic Fourier space axis.

c) Figure 4.7 shows the average amplitude spectrafor the lum and chromimages for all
the dataset (29 natural scenes). When plotted in log-log axis, these average amplitude
spectra (averaged across orientation and across the dataset) are roughly straight lines.
The only possible exceptions are the values corresponding to the high spatial frequency

section of the Fourier space.

Average amplitude spectra
Simple def. - all scenes
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Figure 4.7: Amplitude spectrum for lum to chrom averaged across
orientation for all the dataset (29 scenes)
The slope (o) of thisline is measured for each scene individually using linear

regression. The average values and their standard deviation are:
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slope (o)

Lum -1.11+0.13

Chrom -1.06 £ 0.11

Similar analysisis performed using the shadow-removing definition of lum and chrom
as described in section 4.2. Figure 4.8 shows the average amplitude spectrafor these

lum and chrom images. The resulting values of the slope (o) are:

slope (o)

Lum -1.11+£0.13

Chrom -0.94+0.12

The values of the slope for chrom images are only dlightly different from the previous
ones. This means that shadow-removing definition produces no important variation in

terms of average amplitude spectra for the chrom scenes.

Average amplitude spectra
Shadow-removing definition. All scenes
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Figure 4.8: Average amplitude spectrafor lum and chromimages
when the shadow-removing definition is used.

Theresultsin Figure 4.7 and in the previous section show that the amplitude spectra

averaged across orientation follows:
amplitude=k - f“; (k= constant)

for our dataset. As seen above, the average value for the slope () of the line
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corresponding to the lum scenes is bigger than the corresponding to the chrom scenes.
Thisis consistent with the previous findings in terms of the lum/chrom ratio for the
dataset (Figures 4.1 to0 4.5).

The above result approximately confirms Field's findings in terms of the amplitude
spectra and power spectra of his set of six achromatic images and extends the
implications to the colour image set. If the statistics of natural scenes are stationary (i.e.
they remain constant if any local region of the scene is magnified), the array of sensors
described by Field (see Chapter 1 and Appendix B) produces an even distribution of the
information. Following this, Field considers that the human visual system is efficient
because it is well matched to the statistical redundancy of the visual environment. Itis
possible to further criticise hiswork by considering the effects of cortical neural noise,
the optics of the eye, and the spacing between cortical neurons which does not
correspond to therigid grid proposed by him. For a more extensive discussion and
review of the implications of these findings for human colour vision see Chapters 5 and
6.
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Chapter 5

Discussion

Consequences for human visual system coding

In this Chapter we discuss the findings exposed in Chapters 3 and 4 in terms of their
consequences for the h.v.s. information coding. Several facts are already known about
how the early stages of the h.v.s. process information. For example, we have models of
the distribution and spectral sensitivities of the photoreceptors in the retina, the
interconnections among receptors, horizontal cells, bipolar cells, etc. in the retina, the
retinogeniculate colour and luminance organisation, and the spectral sensitivity
function. We also have evidence of the band pass and low pass filter properties of the
contrast sensitivity functions (which is thought to be the envel ope of many more
narrowly tuned spatial frequency selective channels) and the arrays of neurons selective
to local regions of space, spatial frequency and orientation in the primary visual cortex.
In thiswork, we focused on why some of these strategies of representing the visual
environment might evolve. Our procedure isto analyse the statistical structure of the
visual environment, trying to find the relation between it and the visual system’s

representation of this structure.

5.1 The spectral sensitivity functions of the human visual system and the spectral
radiance and reflectance of natural scenes.

The h.v.s. “hardware” is optimised to extract information in the spectral region where
the solar radiation is maximised. As mentioned before, the IR and UV spectral limits
represent a compromise between the hardware constraints of the h.v.s. and this
requirement. Extending the sensitivity into the UV would have required the capacity to
repair damage to cells and to further correct chromatic aberrations within the eye. To
extend this sensitivity into the IR would have lowered the signal-to-noise ratios because
the human body continuously radiates IR radiation according to body temperature. This

body heat is also present within the eyeball so if we were sensitive to the IR we would



probably have higher noise interfering with the information from the real world. The
fact that even within these hardware limitations, the h.v.s. extracts information in the
spectral region where the solar energy is maximised leads us to the assumption that
there is an evolutionary advantage in doing this and the advantage may be relevant

within the visible spectrum itself.

In Chapter 3 we compared the spectral sensitivity functions for the luminance and
chrominance channels of the h.v.s. and the mean spectral radiance and reflectance from
our scenes. The curves on Figures 3.7 (@) and 3.7 (b) show a correspondence between
these functions within the range 400-680 nm. For wavelengths greater than 680 nm the
spectral radiance and reflectance of our scenes have higher values and little
correspondence to the contrast sensitivity curves. The explanation for this peak in the
far red may come from the spectral reflectance of chlorophyll. As mentioned before,
there is a compromise between the spectral distribution of the energy available in the
natural environment and the hardware constraints of the h.v.s. It islikely that the
advantages of having a receptor tuned to IR may not compensate for the disadvantages
of having to deal with the noise produced by human heat.

The shape of the spectral sensitivity function for the chrominance channel may have
another explanation. The slope of the curve also represents the discrimination abilities
of the h.v.s. The steeper the slope, the better the h.v.s. can discriminate between
opponent colours and the curve may have its significance in optimising the
discrimination of some colours from the background (in this analysis we did not include
discrimination tasks as agoal of the h.v.s. and we only considered the energy

distribution across the visible spectrum).

5.2 The spectral distribution of spatial frequencies (Fourier content) of the natural
scenes.

In Chapter 1 we discussed the luminance and chrominance amplitude spectra of natural
scenes and the coding properties of the cortical cells. There it was manifest the
advantage of processing images with stationary statistics according the model proposed
by Field (1987). These images produce an even distribution of the information among
the array of scale-invariant sensors modelled by the theory. The consequences of

processing images with non-stationary statistics are less clear. Nevertheless, we can
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assume that according to the model, it is an advantage for the h.v.s. to process images

with statistics as close as possible to the “ optimal” stationary statistics.

Figures 3.8 to 3.11 show the spatial frequency structure (Fourier content) along the
visible spectrum. The structure found for achromatic lum and chrom images (Field
1987; Tolhurst et al. 1992) is repeated along the visible spectrum for all the
wavelengths examined. From this we can infer that the h.v.s. is not constrained by the
spectral distribution of the Fourier content to extract information from any particular
spectral region. The only modification of the spectral distribution of the Fourier content
isshown in Figure 3.12. What varies is the value of o (slope of the amplitude spectra

when plotted on double-logarithmic co-ordinates) across the wavel ength axis.

As stated earlier, the consequences for the h.v.s. of processing images with nearly
stationary statistics are not clear. Figure 3.12 shows that the most “optimised” (close to
-1) value of a occursin the region of the visible spectrum where the h.v.s. is optimised
for collecting information. From this we could infer that if there is an advantage of
coding images where a is as close as possible to the optimal value of a=-1.0, thisis

represented by the distribution of the receptors across the visible spectrum.

Subsequently, both the spectral distribution of the energy and the spectral distribution of
the Fourier content of natural scenes, along with hardware constraints, might suffice as
a qualitative explanation of why the h.v.s. samples information within the visible

spectrum in the way it does.

5.3 The spectral distribution of spatial frequencies (Fourier content) of natural scenes
and its relation to the bandwidth of the receptor.

It has been argued that the broad nature of L, M, and S receptor bandwidth is because of
astrategy of avoiding “blind spots’ for wavelength. In addition, having many receptors
would ensure that all the visible spectrum is scanned but would impair our acuity for
colour. Here we have a trade-off between having many receptors or improving the
acuity for colour. The answer was clearly to have afew spectrally broad receptors. In
the case of the fovea, where receptors are more densely packed to gain acuity, we have

only two types (L and M cones).

On the other hand, the fact that most natural objects are not spectrally narrowband
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implies that spectral bandwidth of the receptors should not necessarily be broad. Given
that the L, M, and S spectral sensitivities are indeed spectrally broad this suggests that it
IS necessary to explore some other characteristics of the environment in search of an
explanation. In Chapter 3 we explored how the spatial characteristics of natural scenes
changed when three hypothetical receptors become increasingly broader across the

wavelength spectrum.

This increase in the bandwidth of the receptors produces no further changesin the
Fourier structure of the spectral region examined. As Table 3.1 shows, thereisaso no
statistically significant change in the slope of the Fourier amplitude function when the
bandwidth of the receptor increases. The slope measured in all casesis coincident with
the average slope within each spectral region (see Figure 3.12). Thisleads usto
conclude that the spatial structure of the environment has not played any key rolein the
design of the spectral bandwidth of the receptors. Other features of nature must be
relevant for the human visual system to adopt the strategy of using spectrally broad L,

M and S receptors. To account for these it is necessary to include survival strategies like

recognising predators or efficient search for food, which were not considered here.

5.4 Influence of the separation between the L and M receptors on the spectral
distribution of spatial frequencies (Fourier content) of chrominance information
extracted from natural scenes.

The fact that the L and M cone sensitivity functions overlap accounts for efficient
colour discrimination. Less understood is why this overlap involves a broad region of
the visible spectrum and why the peaks of the L and M sensitivity functions are
spectrally close to each other. In the same manner as in the previous section, we
explored the effects on the spatial frequency structure of the chrominance (L-M)
information channel of modifying the spectral distance between those receptors. The
results are summarised in Table 3.2 and Figures 3.17 to 3.20. Table 3.2 shows the
values of the slope (o) for the chrominance images when the distance between L and M
receptors and the bandwidth of the receptors are modified. Notice how the slope moves
away from the optimum value (o= -1) when the centre of the L receptor approximates
to the centre of the M receptor. On the other hand, the value of o seemsto approximate

to the optimum when the spectral bandwidth of the receptors increases.
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Overlapping the spectral sensitivity functions of the L and M cone receptorsleadsto a
steeper value of a (thus, less optimised) when the chrominance (L-M) image is
considered. On the other hand, increasing the L and M receptors’ bandwidth produces
the opposite effect on the chrominance image. These two effects compensate each other,
so when the bandwidth is 110 nm and the centre of the L cluster isin 570 nm the
average value of a is-0.94 (not far from the optimum). Consequently, the worst value
of a

(-0.76) isfor receptors of 10 nm width and 10 nm spacing along the wavel ength axis.

Again we face the problem of the significance of the small variationsin the value of o
for the h.v.s. coding scheme. If we assume that these variations are important to
optimise the coding, and the optimisation of the coding is of some value for survival,
then the data on Table 3.2 could help to explain why the h.v.s. extracts colour

information mainly using two largely overlapping receptors.

There are some important features not explained by our results. For example there
seems to be an important reason for the h.v.s to have the peaks of the L and M cone
receptors separated by a small spectral distance (see Figure 1.3 -spectral sensitivity of
L, M and S mechanisms) despite the fact that this leads to non-optimised values of a.
This could be related to an optimum colour discrimination of targets lying over agreen
background, which is not included in our analysis. The change in the value of a caused
by the proximity of the L and M cone receptors is compensated for by broadening their
spectral bandwidth.

From the above we conclude that the h.v.s. has adopted an adequate strategy to extract
colour information from the environment but that many of the chosen parameters are
somewhat uncritical. This strategy consists of collecting information from the spectral
region where the statistics are nearly scale-invariant and combining thisinformation in a

way that compensates for digressions from this invariance.

5.5 The lum/chrom ratio of natural scenes and the contrast sensitivity function in
humans

As seen in Chapter 4 (Figures 4.1 to 4.5) the shape obtained for the lum/chrom Fourier
energy ratio suggests an entirely different relationship from that expected from
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Mullen’s (1985) measurements for the contrast sensitivity functions (Figures 1.14 to
1.16). Thisis especially marked for the long-distance set of scenes and also true for the
shadow-removing definition tested. There may be different reasons for such a

discrepancy:

(a) The high spatial frequency chrominance information may beirrelevant for primate
vision task.

Consider as an early task of the visual system the segregation of different parts of a
visual scenein order to identify discrete objects. The spatial distribution of wavelength
differences (colour) would contribute to the differentiation of some objects from their
surrounds and make them more identifiable despite the irrelevant contours produced by
the shadowing. Consider the problem of finding a cherry in acherry tree. Typically, the
cherry will have adifferent luminance and a different colour compared to its
background. Our luminace vision gives us a good representation of the boundaries of
the cherry. However, other luminace properties of this scene will also produce
luminance boundaries (e.g. shadows, textures, light gradients). What is needed to aid
the perceptual segregation of the cherry and its background is an independent
representation of its properties. Thisis conveniently provided by the low-pass
characteristics of colour vision which enhance the global properties of the cherry (its
redness) and largely ignore the boundary representations already provided by
luminance. Such independence provides greater robustness in the segregation task.

(b) The neural machinery has evolved to compensate for the chromatic aberrations of

the optical system of the eye.

These aberrations, called longitudinal (or axial) and transversal (or radial) occur in al

lenses and produce different effects on the image displayed on the retina.

Longitudinal (axial) aberration: for example, if the eye is accommodated (focused) on a
distant red target of 700 nm wavelength, a distant violet one of 400 nm will be seriously
blurred. Le Grand (1967) estimated that a subject emmetroptic for yellow-orange (589.3
nm) would become myopic by 1 diopter for violet (430.8 nm) and hyperopic by nearly
0.6 diopter for deep red (768.1 nm). There is no possibility that the mixed rays from a
white target can all be optimally focused in the retina.

Transversal (radial) aberration: longitudinal aberration is an aberration just in position
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(different chromatic images are located in different planes). Transversal aberration is an
aberration in dimension (the size of the retinal image varies with colour). These effects
are usually combined and the final result is that only one monochromatic imageisin

focusin the retina and the others are surrounded by a blurred border (Le Grand 1967).

These aberrations affect principally the chromatic information that reaches the retina,
producing variations in luminance from them. For example, consider ared-green pure
colour grating where the dominant wavelength varies sinusoidally across the stripes of
the grating and the luminance is equal at every point of the display. This grating can, for
example, be produced by interleaving two sinusoidal luminance gratings of 630 and 520
nm. When the eye focuses on the 630 nm component, the longitudinal aberration will
cause the other component to be defocused (with no changein its spatial frequency or
its phase, but with areduction in its amplitude). This effect will produce a grating that

variesin luminance as well asin chrominance.

On the other hand, transversal aberration causes patterns produced by light of two
different wavelengths to be slightly differently magnified at the retina. If the same
chromatic grating as mentioned above is used, the retinal images of the 630 and 520 nm

gratings would have slightly different spatial frequencies producing luminance artifacts.

An example artifacts produced by chromatic aberrations on the retina are the chromatic

fringes that appears near a black and white edge (Walker 1977).

Artifacts are present on the retina and distort the real information about the outside
world. The filtering of the high spatial frequency colour information existing in the
contrast sensitivity functions (Mullen 1985) may be the way the visual system
eliminates that part of the message that carries wrong information about the real world.
One example of thisis described by Berry and Wilson (1993). They reported that
interference fringes decorating caustics appear black and white with high contrast

instead of highly coloured as expected by the theory.
(c) Physiological constraints:

The optic nerve is a bottleneck in the information path from the retina to subsequent
brain centres. There is therefore strong pressure to maximise the amount of information
transmitted per optic nerve neuron, which implies strong post-receptoral re-coding of

the stimulus information. Ingling and Martinez (1983) suggested that a single opponent
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cell can produce both summing and differencing signals in order to send both luminance
and chrominance information down a single neuron (multiplexing technique). The
differencing signal (chrominance) is produced at low spatial frequencies and the
summing signal (luminance) at high spatial frequencies. “ Spatial frequency” is used
here to signify the degree of change compared to a neighbouring neuron in the
retinotopic array. This scheme predicts (and critically depends on) different lum and
chrom contrast sensitivity functions. A combination of this and the considerationsin (b)

may be a powerful set of reasons for the development of our contrast sensitivity profile.
(d) Absence of shadows in our dataset.

As mentioned before, strong shadows were avoided as much as possible in our dataset.
In our set of indoor scenes taken inside the laboratory, diffuse lighting was employed to
illuminate them. A shadow implies high spatial frequency luminance but very little high
spatial frequency chrominance since colour remains relatively constant across a shadow
boundary. Figure 5.1 shows the lum/chrom amplitude ratio measured for the special

scene described in Chapter 4, section 4.2.

This particular scene consisted of vertical coloured cards with a strong shadow
produced using a projector and aND filter. Both lum and chrom were obtained using
the simple definition mentioned in Chapter 4. Notice how the ratio between lum and
chrom has a completely different trend from that obtained for our dataset (Figure 4.1).
When the shadow-removing definition of chrominance (as defined in Chapter 4, section
4.2) is applied to this scene, one obtains aresult in which there islittle high s.f.

information in the chrominance domain leading to a positive slopein Figure 5.1.

Noticein Figure 5.1 that the ratio lum/chrom is closer to what we expect from Mullen’s
(1985) contrast sensitivity measurements (see Chapter 3). The absence of shadowsin
our dataset perhaps could explain our failure to find an agreement between these

psychophysical measurements and our lum/chrom figures.
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Figure5.1: Lum/chrom ratio for a special scene consisting of a collage of coloured
papers with a strong shadow boundary. Smple and Shadow-removing
definition were used.

On the basis of these results, it may be possible to argue that the characteristics of the
h.v.s. could be tuned to a certain type of scene which does not readily existsin the
(northern temperate) environment in which we analysed scenes. If the world consisted
of relatively large, uniform coloured areas and strong shadows were cast across these,
then the Fourier amplitude ratio of such a set of scenes could be expected to show the
characteristic upward slope predicted from Mullen’ s data. It can be established in future
research whether there are real visual environments for which these characteristics can

hold.
(e) Artifacts in the acquisition of our dataset:

To be discussed later in this chapter.

5.6 The luminance and chrominance amplitude spectra of natural scenes and the coding
properties of the cortical cells.

AsTolhurst et al. (1992) suggested, the assumption that the amplitude spectra of natural

scenes follow:

e(f)=k-f* ;(k= constant)
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with a=-1.0 made possible the development of computational studies of the efficiency
of the visual cortex’s coding scheme (Field 1987, 1989) and psychophysical paradigms
for studying the processing of natural images by the visual system (Tadmor and
Tolhurst 1990). This“efficient” coding was modelled from neuro-physiological studies
of the visual cortex (Blakemore and Campbell 1969) using Gabor’s (1946) theory of
communication (see Chapter 1). As discussed in Chapter 1 and Appendix B, the spatial
frequency selective channels proposed by Field have constant bandwidth in octaves. If
the statistics of the natural scenes are also stationary (o= -1.0), then all different sensors
will carry equivalent amounts of information. From here, he concludes that coding a
scale invariant image into an array of scale-invariant sensors produces an even
distribution of the information (i.e. well distributed capacity within each channel on

average).

Our resultsin Chapter 4 show that for the natural scenes of our dataset, the amplitude
spectra still follow the same relationship but the mean values of the slope (o) are
different: a=-1.11 + 0.13 for lumimages and o= -1.06 + 0.11 for chromimages. The
mean values of the slope using the shadow-removing definition of chrom also change
little compared to the previous figures: a=-0.94 + 0.12. To see whether this changein
the slope (o) is statistically significant we applied Student’ s t-test using a 95%
confidence interval to the value of o obtained for chrom images in both definitions. The
results indicate that they are statistically different.

The fact that amplitude spectra of the luminance images of our dataset have a steeper
slope when plotted in log-log co-ordinates implies that the efficiency of the coding
scheme suggested by Field will be slightly diminished: how important is this changein

the slopes?

Consider an image where the amplitude spectrum follows e(f)= k f* with o= -1. The
amount of energy between frequency fo and frequency nfp, when viewed at adistance d

is:

nry 2k o+ n
Ptk an df =S () - 7]

=k, -(n*2—1). f 22 (Eq. 5.1)
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where k and kg are constants.

If the viewing distance is increased by afactor a the frequency range will be shifted to
the range between afy to anfy. The corresponding value of the energy within those

bands will be:
ko .(n2a+2 _1) .q2+2. f02a+2

For example, if the value of a is-1.1, and the viewing distance is increased by afactor

of a= 2 the corresponding change in the energy inside the band will be

a’**? =087

Thus the energy on increasing the viewing distance by afactor of 2 will be 13 per cent

less.

Even when the viewing distance is the same, the values of the energy vary between two
adjacent octaves. Figure 5.2 shows the values for the energy calculated using Eq. 5.1
(see above) for dopesa=-1.2, a=-1.15 and a=-1.1. ky is an arbitrary constant. The
Figure shows how different from a horizontal line (expected from scale invariant scenes

where a= -1) are the values of the energy according to the variation of the value of a.

Although the previous section shows the difference in terms of Fourier energy of having
values of o different from -1, it isalong way from saying that the model of the h.v.s.
coding scheme constructed by using Gabor’ s theory of the information is inefficient.
These changes in the average slope might be assimilated within the limitations of the
model, which treats the visual system as having constant bandwidths measured in
octaves although the spatial frequency bandwidths of cortical cells show afair degree of
scatter. Another fact which is not considered in the model is the evidence that high
gpatial frequency cells have narrower bandwidths (in octaves) at higher spatial
frequencies. The average bandwidth considered by Field is 1.4 octaves.
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Figure 5.2: Estimated values of the Fourier energy per octave
for three different values of a.

The fact that the statistics corresponding to the chrominance channel are roughly the
same as that of the luminance channel may have implications for the h.v.s. chromatic
system. There is both physiological and psychophysical evidence for multiple spatial
frequency channelsin the colour domain, i.e. thereis a similarity between the spatial
filtering characteristics of colour and luminance striate cortex cells, (Thorell et al. 1984)
and there is selective colour adaptation in the h.v.s. (Bradley et al. 1985). This evidence
is more limited than in the case of the luminance channels (see Chapter 1) and it
suggests that multiple colour sensitive spatial frequency channels are less finely tuned

for spatial frequency than the equivalent luminance channels.

Our findings of similar statistics for the lum and chrom images in Chapter 4 support the
ideathat colour-based spatial vision also operates very much like luminance-based

gpatial vision.

5.7 Possible artifacts that might have led us to the previous results

The most important artifacts could be summarised as:
a) Cdibration artifacts.
b) Effects of light changes and wind.

c) Poor focus - chromatic aberrations of lens.
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d) Unrepresentative visual environment in our dataset.

(a) Calibration artifacts: As stressed in Chapter 2, there was a mismatch between the

measurements of the TopCon SR1 spectro-radiometer and the results obtained with our
DRA Camera. This mismatch was marked especially for red sheets of paper in the
spectral range 580-700 nm. There appears to be no obvious relationship between this

mismatch and our results in Chapters 3 and 4.

(b) Effects of light changes and wind: These are relevant when the integration timeis

high or when we combine one or more imagesto produce L, M, S cones outpuit,
receptors, etc. In these cases atest group of scenes was considered separately. Thistest
group was composed of scenes that obviously could not have been affected by light
changes or wind, asin the scenes taken inside the lab, or in particularly good
conditions. The results corresponding to the test group were compared with those of the
rest of the dataset to confirm the independence of the findings from this possible

artefact.

(c) Poor focus - chromatic aberrations of lens: For the lumimages, this would have led

to less high spatial frequency Fourier energy and thus steeper slopes than those
previously reported for achromatic images (Tolhurst, et al. 1992), which is not the case

here.

Poor focus might also have affected some images in a given scene leading to lesser
values of the Fourier amplitude spectrain the high spatial frequency range and thus
steeper slopes. For example, chromatic aberrationsin our DRA camera lens might be
responsible for defocusing images taken in the blue range of the spectrum and this

might have induced the values shown in Figure 3.12. Here we analyse this problem.

In our analysis of the slope of the Fourier amplitude spectra we explored several images
along the visible spectrum. These images were either chromatically narrowband
(filtered) images or linear combinations of them (receptors, ssmulations of the L and M
cones output, etc.). In al cases the algorithm employed to obtain the slope o of the
amplitude spectra was the logarithmic version of FBANDS as described in Chapter 2.

We choose this algorithm for two important reasons:

(a) The results show less dependence on high spatial frequency than, for example, using
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the linear version of the same algorithm. Thisis because of the annulus-shaped division
of the Fourier space performed (see Figure 2.10). In the logarithmic arrangement, there
isonly one measurement of the average amplitude spectra corresponding to high spatial
frequencies (most external ring in Figure 2.10). The influence of this region upon the
rest of the Fourier space is thus minimised. In the other cases, the same areais normally
covered by several annuli which are more influential at the time of evaluating the
amplitude spectra s slope. Other researchers (Field 1987; Tolhurst et al. 1992) evaluate
the average amplitude spectra of this region in multiple annuli which are still more
critically dependent on defocus.

Average amplitude spectra
Comparison

0.1

0.01

o A

0.001 o LDog version

Lin version
\m\

1E-4 =

Average amplitude spectra

1E-5 ——— ————r e

0.01 0.1 1 10
Spatial freq. (cycles deg)

Figure 5.3: Comparison between the slope obtained with the logarithmic and the
linear version of FBANDS. The former produces a distribution of values more
evenly spaced along the spatial frequency axis than the later, resulting in
amore precise value of the slope.

(b) The data obtained using the logarithmic version of FBANDS are more evenly
spaced when plotted in log-log co-ordinates. As shown in Chapters 3 and 4, FBANDS
initslogarithmic version produces an output consistent with 8 estimations of E(f)
(average amplitude spectra) equally spaced along the logarithmic spatial frequency axis.
To use the linear version to produce the same output would have led to an over-
representation of the high spatial frequency energy when estimating the slope of the plot
on double-logarithmic co-ordinates. Figure 5.3 illustrates how a different version of

FBANDS could lead to different results when estimating the slope a.
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The same image was analysed using the linear version of FBANDS and the logarithmic
version and the slope a obtained strongly depends on how evenly spaced is the data
along the spatial frequency axis. The same might be true for other studies. Figure 5.4
shows the averaged amplitude spectra of four images from Tolhurst’ s dataset (Tolhurst
et al. 1992). Notice the concentration of the data on the right side of the plot. This could
have lead to an over-representation of that sector when estimating the slope of any
straight line in the log-log plot. The situation is more complex considering that the

sector over-represented is specialy influenced by defocus noise.

| L1 11N . I

1 3 10 30 100

Frequency (cycles/picture)

Figure 5.4: Amplitude spectra averaged across orientation
for natural images. From Tolhurst et al. (1992).

Despite the fact that the computer algorithm we chose is not strongly affected by
defocus, we checked whether or not the defocus produced by our lenses could influence
the measurements of o across the visible spectrum. For this we measured the amplitude
spectra slope across the visible spectrum of a pair of non-natural scenes. The processing
was similar to that described in Chapter 3 (logarithmic version of FBANDS, image-
based normalisation). Objects in these scenes were chosen to be completely artificial

and the scene was recorded under controlled conditions inside the |ab. Both scenes

Chapter 5, page 15



consisted of a set of coloured papers on agrey background and were illuminated with
tungsten lamps. Figures 5.5 and 5.6 show the amplitude spectra across the visible
spectrum for scene 1 and scene 2 respectively. Figure 5.7 shows the values of a for
these non-natural scenes across the visible spectrum. From Figure 5.7 we see that the
value of o for scene 1 does not show a decrement for the blue side of the visible
spectrum. In contrast, its value is surprisingly high. The values of slope for scene 2 are
approximately constant across the spectrum. Thisis contrary to what is expected in case
of adefocus in the blue side of the spectrum. We therefore rule out an explanation based

on chromatic aberration of the cameralens.
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Figure5.5: Amplitude spectra across the visible spectrum for scene 1.
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Figure 5.6: Amplitude spectra across the visible spectrum for scene 2.
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Figure5.7: values of o for artificial scenes 1 and 2 across the visible spectrum.

(d) Unrepresentative visual environment in our dataset: Section 5.5 pointed out that the

characteristics of the h.v.s. could be tuned to a certain type of visual environment which
isnot fairly represented by our dataset. In that environment, strong shadowing might
play agreater role and consequently, the statistics in terms of the slopes of the
amplitude spectra of lum and chrom images would be different. Within the constraints
imposed by the time of the year, the geographical location, the lack of strong
shadowing, etc., our dataset intends to be as representative as possible of the natural
environment. Further work is required to establish whether different environments (e.g.
strong shadows and directional illumination) would give rise to different image

statistics, possibly in closer agreement with the psychophysical data.
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Conclusions

Our analysis of the dataset of natural scenes recorded using the DRA-Cameraleads us

to the following conclusions:

1) The Smith and Pokorny (1975) cone sensitivity functions are consistent with
the mean distribution of spectral reflectance and radiance of our natural scenes. Our
analysis only considered the coincidence between the two maxima as an efficiency
criterion. Other factors may need to be considered here to reach a more general

conclusion.

2) The shape of the average distribution of spatial frequency (Fourier content) of
natural scenes shows no significant variation with wavelength. The average value of the
slope (o) tends to be closer to -1 in the range 570 - 640 nm. It is not clear yet to what
extent this provides support to the theories about the function of cortical cells posited in
Chapter 1. No conclusive results about the influence of the spectral bandwidth of the

receptor were obtained.

3) The amplitude spectrum of L-M images was explored for different bandwidths
and separations between the L and M receptors. The average distributions of amplitude
spectra have similar characteristics to those found in the previous measurements. Our
resultsin Table 3.2 show atendency of the slope («) to take steeper values when the
bandwidth of the receptorsisincreased and when the separation is increased.

4) The physiological imbalance between colour and luminance (Mullen 1985) is
not reflected in the spatial content of our dataset. Thisisunlikely to arise from artefacts
of our dataset and it does not depend of the definition of luminance and chrominance
used in this work.

5) The amplitude spectrum of luminance and chrominance images exhibits
approximately the same characteristics as the amplitude spectra of achromatic images
investigated by other workers (Field 1987; Tolhurst et al. 1992). The average value of
the slope (o) measured hereis a=-1.11 + 0.13 for lumand a=-1.06 =+ 0.11 for

chrom. ). The value of o obtained using a shadow-removing definition of chrom. is



a=0.94 + 0.12.

In this work we considered the optimisation to extract colour and spatial information
from static scenes as the most important factor in our analysis of the h.v.s. Despite that
there should always be an advantage in being optimised to extract that information from
the environment, in some cases this might not be the most important selective reason.
As our results show, in some situations the optimisation of thisinformation extraction is
apparently an important goal (1), sometimes its importance is not clear (2), and in other
situationsit is secondary. A complete analysis examining other factors such as motion,
stereo vision, priorities for survival, etc., must be considered in order to better

understand their influence on the operation of the human visual system.
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Appendix A

The DRA Camera

In order to better understand the work of the DRA Camera, the following sections (Al
to A5) were summarised from the draft “DRA Camera Theory” by Gavin Brelstaff,
Perceptual Systems Research Centre, University of Bristol, UK, October, 1993.

Al DRA-Camera theory

The DRA Camerawas constructed to work as a simple image forming device. Its optics
are described in Figure A1. Image irradiance is converted into signal by the sensor

using the following assumptions:
a) The systemis properly focused.
b) Thereisno vignetting

From those assumptions we can write the following equation:

E(X’ y) = L(X1 y) -a- k(X, y) y

where E(x,y) isthe flux per unit area at the arbitrary point (x,y) or sceneirradiancein
W.m?2. L(x,y) is the flux per unit foreshortened surface area per unit solid angle or scene
radiance that projects on (x,y) in W.m2.sr %, ais the transmittance of the aperture and k

isthe optical sensitivity. The last one is usually dependent on the position (X,y).

To complete the previous equation we need to add an interference filter of spectral
transmittance F()) and to consider the spectral sensitivity s(A) of the camera’ s sensors.

Then the above equation becomes wavelength () dependent as follows:

E(X’ y’}\') = SO\') ) F(}\') ' L(X! y17\') a- k(X’ y)

Here we assume that chromatic aberrationsin the DRA Camera optics are negligible

and then a and k(x,y) do not vary with wavelength.
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Figure Al: Scheme of the DRA-Camera.

A2 Measurements of the image radiance

The value of image irradiance on position (x,y) corresponds to a sample over a chosen
wave-band depending on the particular interference filter used (Figure 2.3 shows a
graph of the transmittance of the filters employed). This can be determined by

integrating all contributions across that wave-band:

E(xy)=a-k(x Y)TS(%) Fe () - L(X y,4) - dA

—00

The suffix f above denotes the particular filter in use.

Given that we want to estimate the value of the image radiance Ly from the measured
image irradiance E; , we need to consider the way L; is being sampled. This can be
approximated as the mean value of L()\) within the wave-band considered. Considering

L(A) as constant over the wave-band simplifies the above equation:

Ei(x,y)=a-k(x,y)-L; (X%y) - T;; (Eq. Al

where T, = Ts(k) - F; (L) - d\ iscalled wave-band transmittance and is regarded as

—00

constant although it may vary with temperature. The values of T vary from filter to
filter. These can be estimated from both s(A) and F; (A). The former oneis taken from

supplier’ s information and the second one is measured using the TopCon Spectro-
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radiometer (as referred in Chapter 2).

A3 Discrete sampling of E;

The equations above were assumed to hold for an infinitesimal point (x,y) on the image.
In practice, the image is tessellated by arectangular grid of rectangular pixels. The
signal isintegrated over the area of the pixel. All the assumptions that |ead usto the
previous equation are still valid, except that the position (x,y) is now referred to asa

discrete point on the pixel grid and E; (x,y) isan spatialy averaged signal.

A4 Temporal sampling of E¢

The sampling referred above also occurs over a given integer number of video frames
(thisperiod is aso called integration time t). As discussed in Chapter 2, the integration
timeis decided for each narrowband image in order to allow a good dynamic range to
be obtained.

The grey level (gr) output of the camera was found not to be directly proportional to the
integration time t. Experiments were performed in order to establish the relationship
between the grey-level output, the incident irradiance and the integration time. Thisis

referred as time averaged value of E; and denoted E; (g; ,t).

The cadibration strategy to obtain the form of the function E; (g, ,t) isdescribed in
Chapter 2. The value of g was measured for given values of E, and t. Constant values
of E, were achieved using a constant current illuminant and a variety of aperture
settings. From Eq. A1 we can derive absolute values of E, by considering each term in
turn:

-Ls: sceneradiance is provided by awhite card illuminated by constant current

illuminant. It value was measured using a TopCon Spectro-radiometer.

-a: aperture transmittance is controlled to take on arange of known values. To obtain

values that fall between the aperture f-stopsis by achieved using neutral density filters.

-k(x,y) the optical sensitivity is assumed to be unit considering afixed point near the

optic axis. Spatial variations were mapped separately.
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-T; the transmittance is known as described above.

In practice our interest is limited to investigating the correlation between g;, t and a as

everything else is kept constant.

A5 Obtaining spectral reflectance from E; (x,y)

Spectral reflectance is related to spectral radiance and illumination as follows:

It (%,Y)-Re (X,y) = E(X.y)

in which I¢(x,y) is the illumination of the image measured in W.m, R (xy) is the
spectral reflectance in agiven direction and E; (x,y) is the spectral radiance in that
direction. To simplify our problem we make the assumption that all reflection in the
scene is approximately independent of the angle considered (Rayleghian). For our
purposes, thisistrue if we avoid reflections from plants in short-distance images, etc.
Another assumption that we make in order to obtain the value of reflectanceis that

It (x,y) is fundamentally constant (independent of the position x,y) across all the image:
e - R (x,y) = E; (x,y)

Thisis not true in the case of strong shadowing over our scenes. This was avoided as
much as possible, and diffuse lighting was used for scenes taken in the lab (indoor
scenes). With these assumptions in mind and measuring the radiance of an object of

known reflectance, we were able to obtain the illumination I+ of the scene:

B (X0, Yo)
Ry (%o Yo)

f

The above was done using the standard Kodak grey card which was placed into the
scene to that effect. Using this value of known illumination we were able to obtain the

spectral reflectance for all points within the image using:

E (xy)

¥

R (x,y) =
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A6 The “ reilluminate” algorithm

Changes in the illumination during the recording of the scene could introduce
undesirable variations in our estimations of spectral radiance. For example, suppose that
during the recording of the scene X there was a substantial change of the lighting when

filter fo was added in front of the lenses. Then the value of E; (X, Y) isaffected by a

factor c:
Ef, (X,y)=c-E; (X,y)

Thevalueof | (ascalculated in the above section) is also affected by the same factor:

B E;O(meo) . C Efo(xo’yo)
Rfo(xo’yo) RfO(XO’yO)

fo

but the reflectance obtained from there remains unaffected:

Ef, (x.y)

R, () ="
f

0

As mentioned in Chapter 2, there were external measurements of spectral radiance over
the Kodak grey card for each scene of the dataset. They were taken before and after the
recording of each scene in order to check whether there was a substantial change in the
illumination (linear light changes, see Chapter 2) during it. From these measurements
we were able to compare the spectral radiance of the grey card as measured with the
DRA-camera and the TopCon SR1 and see whether or not there was any variation (light
fluctuations, see Chapter 2) in the illumination during the recording. The measurements
also provided areliable sample of the spectral characteristics of the illumination of our

scenes. “Reilluminate” is designed to

a) compute the spectral illumination Ff of the scene from external measurements using

the TopCon SR1.

b) obtain the spectral reflectance R: (x,y) of the scenes (unaffected by changesin the

illumination) as described above.

c) “reilluminate’ the scene using these values. The radiance is then corrected to

compensate changesin the illumination: E; (X,y) = I~f ‘R, (X,y)
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The effects of reillluminate were tested in our image analysis. Images processed with

this algorithm proved to be indistinguishable from the rest in terms of Fourier spectra.
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Appendix B

Fourier amplitude spectra of natural scenes

Image analysis

Two-dimensional Fourier transform theory has played akey role in thiswork. These
transformations had been applied by the image processing algorithm “FBANDS’ (in
either itslinear or logarithmic versions). Here we emphasi se the understanding of the
“FBANDS’ output and how it is related with previous research methods by Field
(1987) and others.

B1 Fourier transforms

Consider afunction f(x,y) where (x,y) are the co-ordinates of any point. If f(x,y) is
continuous and integrable and F(u,v) isintegrable, the following Fourier transforms pair

exists:

Fuv) =] f(xy) erzeomass
f(xy) =] Fuy). e
where u and v are the frequency variables

The Fourier spectrum, phase and power spectrum, respectively are:

IF(u,v)|= \/Rz(u,v) +12%(u,v)

o(u,v) = tan{ | ((l:’v)

1
R ,V)J

P(u,v) = |F(u,v)|2 = R*(u,v) + 1 %(u,v)



Having the above notation in mind, we can now introduce the discrete Fourier

transform pair for the two-variable case:

1 M=IN=2 o (W
fu) i S ey e D
x=0 y=

foru=0,1,2,3,..,M-1,v=0,1,2,3,..,N-1

M-1N-1 i2n (W)
f(x,y)=-2, 2 F(uv)-e MN

u=0 v=0
forx=0,1,2,3,..,M-1andy=0,1,2,3,...,N- L

Thisis applied to sampled two-dimensional functions. For example, f(x,y) now
represents samples of the function f(xo+ XAX, Yo+ yAy) forx=0, 1, 2,3,...,M-1andy
=0, 1,2, 3,...,N- 1 The sampling is now in atwo-dimensional grid with divisions of
width Ax and Ay in the x and y axis. Similar comments apply to F(u,v) and the sampling

increments in the spatial and frequency domains are related by:

Au—i andAv—i
- MAX' " Nay

The Fourier spectrum, phase, and power spectrum are also given by the same equations
as in the continuous case. Unlike the continuous case, existence of the discrete Fourier

transforms s of no concern, because F(u,v) always exists.

As seen in Chapter 2, each image of our dataset can be considered as a discrete two-
dimensional function (in where f(x,y) can be either radiance or reflectance, depending of
the case) of the spatial co-ordinates x,y. FBANDS was designed to produce adisplay in
which luminance is proportional to the amplitude of |F(u,v)|. In this display (see the
polar diagram on Figure B1) the distance from the centre (U*+%)¥? typically
corresponds to the spatial frequency considered and the orientation ¢ to the phase angle.
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A Amplitude spectra

o (UV)

Figure B1: Polar display representing the function E(f) in the Fourier space.
Typically itisa 256 x 256 digital display where the distance
from the centre corresponds to the spatial
frequency f and ¢ to the orientation.

B2 Scale invariant images

These special images (also called fractal-like images) have the particularity that their
statistics do not change when viewing distance isincreased or decreased. For example,
if we measure the contrast within these images as the variance in pixel intensities, it
should remain constant if we magnify any particular region of them. On average, the

variance should be the same on magnifying any region.

Thisinvariance in contrast can be related to the amplitude power by Parseval’s theorem:

<

—1N-—

Z::;< f (X’ y))z —1N-1 )
= 2P

=0 v=

N

i
o

c

The left side of the above equation represents the variance (from mean =0) of the image
and |F(u,v)[? is the power spectrum. The right side of the equation represents the total
energy. |If we consider that the variance remains constant independently of the scale, the
total energy must also be independent of the scale. For consistency with the existing
literature in the vision field, we use the expression Fourier energy density denoted as

g(f) for the term |F(u,v)|.

For example, if we expect an image to be scale invariant, the total amount of energy
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between frequency fo and frequency nfy must remain constant when we shift the range

of frequenciesto the range af, to anfy (thisis equivalent to a magnification).

nf 0
fg(f).znf - df :a]‘g(f)~2nf .df =C

fo afo

For this to occur, g(f) must be proportional to f 2. Then the amplitude spectra must be

proportional tof ™.

From the above we conclude that if the power spectrum falls off as f  then the image

will have constant variance at all scales.

B3 Image transforms

Despite the complexity of natural images, they share some statistical features that
distinguish them from random-dot patterns. Some of these features were explored by
Field (1987, 1989) who analysed a set of 6 images in terms of their Fourier amplitude

spectra and power spectra.

In hiswork Field obtained the value of amplitude spectrafor his set of six digitalysed

natural images and found some consistent statistics as follows:

a) When plotted in atwo-dimensional diagram (as the one shown on Figure B1) the

amplitude spectra show its greatest value at low spatial frequencies.

b) If amplitude spectra are averaged across all orientations the fall off is remarkably
similar for all scenes. Field suggests that this falloff is roughly proportional to f*

Where o= -1. From this follows that the power spectrum g(f) o« f .

c) When the amplitude spectra are plotted in double logarithmic co-ordinates the
graph is astraight line with slope -1. Figure B2 shows this value averaged across all
orientations for the six images analysed by Field.

These kind of images are scale invariant. This means that we would expect the relative

contrast energy to be independent of the viewing distance.

Another study in the same field by Tolhurst et al. (1992) revealed different results. They
processed 135 digitised pictures and found that only a very restricted sample of them

conform to the characteristics listed above. When plotted in double logarithmic co-
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ordinates they are closer to a straight line with an average slope of -1.2, instead of the

1.0 previously suggested. Figure 5.3 in Chapter 5 shows the averaged amplitude spectra
of four images from Tolhurst’s dataset. Notice the concentration of the data on the right
side of the plot. As explained before this could have led to an overrepresentation of that

sector when estimating the slope of any straight line in the log-log plot.

a0k F
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D 4
wf C
. B
=2
= .
S a0fF A
o :
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1.0+
Spatial freq.
0.0 Lt Il Ny
0.0 1.0 2.0

Figure B2: Fourier energy for six images averaged
across orientations (from Field 1987)
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